# American Institute of Mathematical Sciences

July  2018, 38(7): 3637-3661. doi: 10.3934/dcds.2018157

## Homoclinic and stable periodic solutions for differential delay equations from physiology

 1 Justus Liebig University, 35392, Arndtstrasse 2, Giessen, Germany 2 National Research University Higher School of Economics, St. Petersburg, Russia

Received  November 2017 Revised  January 2018 Published  April 2018

A one-parameter family of Mackey-Glass type differential delay equations is considered. The existence of a homoclinic solution for suitable parameter value is proved. As a consequence, one obtains stable periodic solutions for nearby parameter values. An example of a nonlinear functions is given, for which all sufficient conditions of our theoretical results can be verified numerically. Numerically computed solutions are shown.

Citation: Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157
##### References:
 [1] P. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics Reported, 2 (1989), 1-38.   Google Scholar [2] O. Diekmann, S. M. Verduyn Lunel, S. A. van Gils and H. -O. Walther, Delay Equations Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar [3] J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar [4] T. Krisztin, H. -O. Walther and J. Wu, Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback, American Mathematical Society, Providence, Rhode Island, 1999.  Google Scholar [5] B. Lani-Wayda, Wandering solutions of delay equations with sine-like feedback, Mem. Amer. Math. Soc., 151 (2001), ⅹ+121 pp. doi: 10.1090/memo/0718.  Google Scholar [6] A. Lasota and M. Wazewska-Czyzewska, Matematyczne problemy dynamiki ukladu krwinek czerwonych, Matematyka Stosowana, 6 (1976), 23-40.   Google Scholar [7] M. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, New Series, (197) (1977), 286-289. Google Scholar [8] H.-O. Walther, Homoclinic and periodic solutions of scalar differential delay equations, Banach Center Publ., 23 (1989), 243-263.   Google Scholar

show all references

##### References:
 [1] P. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics Reported, 2 (1989), 1-38.   Google Scholar [2] O. Diekmann, S. M. Verduyn Lunel, S. A. van Gils and H. -O. Walther, Delay Equations Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar [3] J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar [4] T. Krisztin, H. -O. Walther and J. Wu, Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback, American Mathematical Society, Providence, Rhode Island, 1999.  Google Scholar [5] B. Lani-Wayda, Wandering solutions of delay equations with sine-like feedback, Mem. Amer. Math. Soc., 151 (2001), ⅹ+121 pp. doi: 10.1090/memo/0718.  Google Scholar [6] A. Lasota and M. Wazewska-Czyzewska, Matematyczne problemy dynamiki ukladu krwinek czerwonych, Matematyka Stosowana, 6 (1976), 23-40.   Google Scholar [7] M. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, New Series, (197) (1977), 286-289. Google Scholar [8] H.-O. Walther, Homoclinic and periodic solutions of scalar differential delay equations, Banach Center Publ., 23 (1989), 243-263.   Google Scholar
Functions from class $\Gamma$
Approximate shape of the solution for $f_{\alpha_{0}}$
Approximate shape of the solution for $f_{\alpha_1}$
Invariant cone
Solution with $\alpha = 0$
Solution with $\alpha = 0.3649$
Solution with $\alpha = 0.340435$
Periodic solution for $\alpha = 0.34182$
 [1] Ahmed Elhassanein. Complex dynamics of a forced discretized version of the Mackey-Glass delay differential equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 93-105. doi: 10.3934/dcdsb.2015.20.93 [2] Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191 [3] Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 [4] Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011 [5] Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003 [6] Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230 [7] Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053 [8] Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217 [9] P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 [10] Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 [11] Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 [12] Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic & Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245 [13] T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277 [14] Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 [15] Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 [16] Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 [17] István Győri, László Horváth. On the fundamental solution and its application in a large class of differential systems determined by Volterra type operators with delay. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1665-1702. doi: 10.3934/dcds.2020089 [18] Maicon Sônego. Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5981-5988. doi: 10.3934/dcdsb.2019116 [19] Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 [20] Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

2018 Impact Factor: 1.143