
-
Previous Article
Degenerate lower dimensional invariant tori in reversible system
- DCDS Home
- This Issue
- Next Article
Symmetry breaking in a globally coupled map of four sites
1. | Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1053 Budapest, Hungary |
2. | MTA-BME Stochastics Research Group, Budapest University of Technology and Economics, Egry József u. 1, H-1111 Budapest, Hungary |
A system of four globally coupled doubling maps is studied in this paper. It is known that such systems have a unique absolutely continuous invariant measure (acim) for weak interaction, but the case of stronger coupling is still unexplored. As in the case of three coupled sites [
References:
[1] |
C. Boldrighini, L. A. Bunimovich, G. Cosimi, S. Frigio and A. Pellegrinotti,
Ising-type transitions in coupled map lattices, Journal of Statistical Physics, 80 (1995), 1185-1205.
doi: 10.1007/BF02179868. |
[2] |
C. Boldrighini, L. A. Bunimovich, G. Cosimi, S. Frigio and A. Pellegrinotti,
Ising-type and other transitions in one-dimensional coupled map lattices with sign symmetry, Journal of Statistical Physics, 102 (2001), 1271-1283.
doi: 10.1023/A:1004892312745. |
[3] |
L. A. Bunimovich and Y. G. Sinai,
Spacetime chaos in coupled map lattices, Nonlinearity, 1 (1998), 491-516.
doi: 10.1088/0951-7715/1/4/001. |
[4] |
J. Chazottes and B. Fernandez, Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, volume 671, Springer Science & Business Media, 2005. |
[5] |
B. Fernandez,
Breaking of ergodicity in expanding systems of globally coupled piecewise affine circle maps, Journal of Statistical Physics, 154 (2014), 999-1029.
doi: 10.1007/s10955-013-0903-9. |
[6] |
G. Gielis and R. S. MacKay,
Coupled map lattices with phase transition, Nonlinearity, 13 (2000), 867-888.
doi: 10.1088/0951-7715/13/3/320. |
[7] |
E. Järvenpää, A SRB-measure for globally coupled circle maps, Nonlinearity, 6 (1997), 1435. Google Scholar |
[8] |
M. Jiang and Y.B. Pesin,
Equilibrium measures for coupled map lattices: Existence, uniqueness and finite-dimensional approximations, Communications in Mathematical Physics, 193 (1998), 675-711.
doi: 10.1007/s002200050344. |
[9] |
W. Just,
Globally coupled maps: Phase transitions and synchronization, Physica D: Nonlinear Phenomena, 81 (1995), 317-340.
doi: 10.1016/0167-2789(94)00213-A. |
[10] |
G. Keller and C. Liverani,
Uniqueness of the SRB measure for piecewise expanding weakly coupled map lattices in any dimension, Communications in Mathematical Physics, 262 (2006), 33-50.
doi: 10.1007/s00220-005-1474-7. |
[11] |
J. Koiller and L. S. Young,
Coupled map networks, Nonlinearity, 23 (2010), 1121-1141.
doi: 10.1088/0951-7715/23/5/006. |
[12] |
J. Miller and D. A. Huse, Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled-map lattice, Physical Review E, 48 (1993), 2528.
doi: 10.1103/PhysRevE.48.2528. |
[13] |
W. Parry, The Lorenz attractor and a related population model, in Ergodic Theory, pages 169–187, Lecture Notes in Math., 729, Springer, Berlin, 1979. |
[14] |
F. Sélley and P. Bálint,
Mean-field coupling of identical expanding circle maps, Journal of Statistical Physics, 164 (2016), 858-889.
doi: 10.1007/s10955-016-1568-y. |
[15] |
D. Thomine, A spectral gap for transer operators of piecewise expanding maps, Discrete Contin. Dyn. Syst., 30 (2011), 917–944, arXiv: 1006.2608. |
show all references
References:
[1] |
C. Boldrighini, L. A. Bunimovich, G. Cosimi, S. Frigio and A. Pellegrinotti,
Ising-type transitions in coupled map lattices, Journal of Statistical Physics, 80 (1995), 1185-1205.
doi: 10.1007/BF02179868. |
[2] |
C. Boldrighini, L. A. Bunimovich, G. Cosimi, S. Frigio and A. Pellegrinotti,
Ising-type and other transitions in one-dimensional coupled map lattices with sign symmetry, Journal of Statistical Physics, 102 (2001), 1271-1283.
doi: 10.1023/A:1004892312745. |
[3] |
L. A. Bunimovich and Y. G. Sinai,
Spacetime chaos in coupled map lattices, Nonlinearity, 1 (1998), 491-516.
doi: 10.1088/0951-7715/1/4/001. |
[4] |
J. Chazottes and B. Fernandez, Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, volume 671, Springer Science & Business Media, 2005. |
[5] |
B. Fernandez,
Breaking of ergodicity in expanding systems of globally coupled piecewise affine circle maps, Journal of Statistical Physics, 154 (2014), 999-1029.
doi: 10.1007/s10955-013-0903-9. |
[6] |
G. Gielis and R. S. MacKay,
Coupled map lattices with phase transition, Nonlinearity, 13 (2000), 867-888.
doi: 10.1088/0951-7715/13/3/320. |
[7] |
E. Järvenpää, A SRB-measure for globally coupled circle maps, Nonlinearity, 6 (1997), 1435. Google Scholar |
[8] |
M. Jiang and Y.B. Pesin,
Equilibrium measures for coupled map lattices: Existence, uniqueness and finite-dimensional approximations, Communications in Mathematical Physics, 193 (1998), 675-711.
doi: 10.1007/s002200050344. |
[9] |
W. Just,
Globally coupled maps: Phase transitions and synchronization, Physica D: Nonlinear Phenomena, 81 (1995), 317-340.
doi: 10.1016/0167-2789(94)00213-A. |
[10] |
G. Keller and C. Liverani,
Uniqueness of the SRB measure for piecewise expanding weakly coupled map lattices in any dimension, Communications in Mathematical Physics, 262 (2006), 33-50.
doi: 10.1007/s00220-005-1474-7. |
[11] |
J. Koiller and L. S. Young,
Coupled map networks, Nonlinearity, 23 (2010), 1121-1141.
doi: 10.1088/0951-7715/23/5/006. |
[12] |
J. Miller and D. A. Huse, Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled-map lattice, Physical Review E, 48 (1993), 2528.
doi: 10.1103/PhysRevE.48.2528. |
[13] |
W. Parry, The Lorenz attractor and a related population model, in Ergodic Theory, pages 169–187, Lecture Notes in Math., 729, Springer, Berlin, 1979. |
[14] |
F. Sélley and P. Bálint,
Mean-field coupling of identical expanding circle maps, Journal of Statistical Physics, 164 (2016), 858-889.
doi: 10.1007/s10955-016-1568-y. |
[15] |
D. Thomine, A spectral gap for transer operators of piecewise expanding maps, Discrete Contin. Dyn. Syst., 30 (2011), 917–944, arXiv: 1006.2608. |












0 | 2 | 0 | 1 | 1 | 0 | 1 | 4 | 3 | 2 | 4 | 3 | 4 | 0 | 1 | 2 | 0 | 1 | 0 | 4 | 2 | 4 | 3 | 3 | 4 | 3 | |||||||||
0 | 1 | 1 | 0 | 2 | 4 | 4 | 4 | 3 | 3 | 0 | 1 | 1 | 0 | 1 | 1 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 2 | 0 | 0 | |||||||||
0 | 0 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 4 | 3 | 4 | 4 | 3 | 2 | 4 | 4 | 2 | 3 | 3 | 4 | 3 |
0 | 2 | 0 | 1 | 1 | 0 | 1 | 4 | 3 | 2 | 4 | 3 | 4 | 0 | 1 | 2 | 0 | 1 | 0 | 4 | 2 | 4 | 3 | 3 | 4 | 3 | |||||||||
0 | 1 | 1 | 0 | 2 | 4 | 4 | 4 | 3 | 3 | 0 | 1 | 1 | 0 | 1 | 1 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 2 | 0 | 0 | |||||||||
0 | 0 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 4 | 3 | 4 | 4 | 3 | 2 | 4 | 4 | 2 | 3 | 3 | 4 | 3 |
[1] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[2] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[3] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[4] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[5] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[6] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[7] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[8] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[9] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[10] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[11] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[12] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[13] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[14] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[15] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[16] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[17] |
Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020386 |
[18] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[19] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[20] |
Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]