• Previous Article
    The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4
  • DCDS Home
  • This Issue
  • Next Article
    Lower spectral radius and spectral mapping theorem for suprema preserving mappings
August 2018, 38(8): 4087-4115. doi: 10.3934/dcds.2018178

Automatic sequences as good weights for ergodic theorems

1. 

Institute of Mathematics, University of Leipzig, P.O. Box 100 920, 04009 Leipzig, Germany

2. 

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

3. 

Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków, Łojasiewicza 6, 30-348 Kraków, Poland

Received  November 2017 Revised  March 2018 Published  May 2018

We study correlation estimates of automatic sequences (that is, sequences computable by finite automata) with polynomial phases. As a consequence, we provide a new class of good weights for classical and polynomial ergodic theorems. We show that automatic sequences are good weights in $ L^2$ for polynomial averages and totally ergodic systems. For totally balanced automatic sequences (i.e., sequences converging to zero in mean along arithmetic progressions) the pointwise weighted ergodic theorem in $ L^1$ holds. Moreover, invertible automatic sequences are good weights for the pointwise polynomial ergodic theorem in $ L^r$, $ r>1$.

Citation: Tanja Eisner, Jakub Konieczny. Automatic sequences as good weights for ergodic theorems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4087-4115. doi: 10.3934/dcds.2018178
References:
[1]

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci., 98 (1992), 163–197. doi: 10.1016/0304-3975(92)90001-V.

[2]

J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511546563.

[3]

I. Assani, A weighted pointwise ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 139–150. doi: 10.1016/S0246-0203(98)80021-6.

[4]

I. Assani, Wiener Wintner Ergodic Theorems, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/4538.

[5]

I. Assani and R. Moore, A good universal weight for multiple recurrence averages with commuting transformations in norm, Ergodic Theory Dynam. Systems, 37 (2017), 1009–1025, available at https://arXiv.org/abs/1506.06730. doi: 10.1017/etds.2015.76.

[6]

I. Assani and K. Presser, A survey of the return times theorem, in Ergodic Theory and Dynamical Systems, De Gruyter Proc. Math., De Gruyter, Berlin, 2014, 19–58.

[7]

J. P. Bell, M. Coons and K. G. Hare, The minimal growth of a k-regular sequence, Bull. Aust. Math. Soc., 90 (2014), 195–203. doi: 10.1017/S0004972714000197.

[8]

J. P. Bell, M. Coons and K. G. Hare, Growth degree classification for finitely generated semigroups of integer matrices, Semigroup Forum, 92 (2016), 23–44. doi: 10.1007/s00233-015-9725-1.

[9]

A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 288 (1985), 307–345, URL http://dx.doi.org/10.2307/2000442. doi: 10.1090/S0002-9947-1985-0773063-8.

[10]

D. Berend, M. Lin, J. Rosenblatt and A. Tempelman, Modulated and subsequential ergodic theorems in Hilbert and Banach spaces, Ergodic Theory Dynam. Systems, 22 (2002), 1653–1665. doi: 10.1017/S0143385702000846.

[11]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 5–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__5_0, With an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein.

[12]

J. Bourgain, H. Furstenberg, Y. Katznelson and D. S. Ornstein, Appendix on return-time sequences, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 42–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__42_0.

[13]

Z. Buczolich and R. D. Mauldin, Divergent square averages, Ann. of Math. (2), 171 (2010), 1479–1530. doi: 10.4007/annals.2010.171.1479.

[14]

Q. Chu, Convergence of weighted polynomial multiple ergodic averages, Proc. Amer. Math. Soc., 137 (2009), 1363–1369. doi: 10.1090/S0002-9939-08-09614-7.

[15]

D. Cömez, M. Lin and J. Olsen, Weighted ergodic theorems for mean ergodic L1- contractions, Trans. Amer. Math. Soc., 350 (1998), 101–117. doi: 10.1090/S0002-9947-98-01986-2.

[16]

C. Cuny and M. Weber, Ergodic theorems with arithmetical weights, Israel J. Math., 217 (2017), 139-180. doi: 10.1007/s11856-017-1441-y.

[17]

S. Drappeau and C. Müllner, Exponential sums with automatic sequences, 2017, Preprint, available at https://arXiv.org/abs/1710.01091.

[18]

M. Drmota and J. F. Morgenbesser, Generalized Thue-Morse sequences of squares, Israel J. Math., 190 (2012), 157–193. doi: 10.1007/s11856-011-0186-2.

[19]

P. Dumas, Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences, Linear Algebra Appl., 438 (2013), 2107–2126. doi: 10.1016/j.laa.2012.10.013.

[20]

P. Dumas, Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: algebraic and analytic approaches collated, Theoret. Comput. Sci., 548 (2014), 25–53. doi: 10.1016/j.tcs.2014.06.036.

[21]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, vol. 259 of Graduate Texts in Mathematics, Springer-Verlag London, Ltd., London, 2011. doi: 10.1007/978-0-85729-021-2.

[22]

T. Eisner, A polynomial version of Sarnak's conjecture, C. R. Math. Acad. Sci. Paris, 353 (2015), 569–572. doi: 10.1016/j.crma.2015.04.009.

[23]

T. Eisner, Linear sequences and weighted ergodic theorems, Abstr. Appl. Anal., (2013), Art. ID 815726, 5 pp.

[24]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, vol. 272 of Graduate Texts in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.

[25]

T. Eisner and B. Krause, (Uniform) convergence of twisted ergodic averages, Ergodic Theory Dynam. Systems, 36 (2016), 2172–2202. doi: 10.1017/etds.2015.6.

[26]

T. Eisner and P. Zorin-Kranich, Uniformity in the Wiener-Wintner theorem for nilsequences, Discrete Contin. Dyn. Syst., 33 (2013), 3497–3516. doi: 10.3934/dcds.2013.33.3497.

[27]

E. H. El Abdalaoui, J. Ku laga-Przymus, M. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst., 37 (2017), 2899–2944. doi: 10.3934/dcds.2017125.

[28]

A.-H. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory and Dynamical Systems, (2017), 1-15. doi: 10.1017/etds.2017.81.

[29]

N. Frantzikinakis, Uniformity in the polynomial Wiener-Wintner theorem, Ergodic Theory Dynam. Systems, 26 (2006), 1061–1071. doi: 10.1017/S0143385706000204.

[30]

A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), 259-265. doi: 10.4064/aa-13-3-259-265.

[31]

B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465–540. doi: 10.4007/annals.2012.175.2.2.

[32]

B. Host and B. Kra, Uniformity seminorms on $ \ell^∞$ and applications, J. Anal. Math., 108 (2009), 219–276. doi: 10.1007/s11854-009-0024-1.

[33]

J. Konieczny, Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, 2017, Preprint, available at https://arXiv.org/abs/1611.09985.

[34]

B. Krause and P. Zorin-Kranich, A random pointwise ergodic theorem with Hardy field weights, Illinois J. Math., 59 (2015), 663–674, URL http://projecteuclid.org/euclid.ijm/1475266402.

[35]

P. LaVictoire, Universally L1-bad arithmetic sequences, J. Anal. Math., 113 (2011), 241–263. doi: 10.1007/s11854-011-0006-y.

[36]

E. Lesigne, Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner, Ergodic Theory Dynam. Systems, 10 (1990), 513– 521. doi: 10.1017/S014338570000571X.

[37]

E. Lesigne, Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes, Ergodic Theory Dynam. Systems, 13 (1993), 767-784.

[38]

E. Lesigne and C. Mauduit, Propriétés ergodiques des suites q-multiplicatives, Compositio Math., 100 (1996), 131–169, URL http://www.numdam.org/item?id=CM_1996__100_2_131_0.

[39]

E. Lesigne, C. Mauduit and B. Mossé, Le théorème ergodique le long d'une suite q-multiplicative, Compositio Math., 93 (1994), 49–79, URL http://www.numdam.org/item?id=CM_1994__93_1_49_0.

[40]

M. Lin, J. Olsen and A. Tempelman, On modulated ergodic theorems for Dunford-Schwartz operators, in Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997), 43 (1999), 542–567, URL http://projecteuclid.org/euclid.ijm/1255985110.

[41]

B. Martin, C. Mauduit and J. Rivat, Théorème des nombres premiers pour les fonctions digitales, Acta Arith., 165 (2014), 11–45. doi: 10.4064/aa165-1-2.

[42]

C. Mauduit, Automates finis et ensembles normaux, Ann. Inst. Fourier (Grenoble), 36 (1986), 1–25, URL http://www.numdam.org/item?id=AIF_1986__36_2_1_0. doi: 10.5802/aif.1044.

[43]

C. Mauduit, Propriétés arithmétiques des substitutions et automates infinis, Ann. Inst. Fourier (Grenoble), 56 (2006), 2525–2549, URL http://aif.cedram.org/item?id=AIF_200__56_7_2525_0, Numération, pavages, substitutions. doi: 10.5802/aif.2248.

[44]

C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences. Ⅱ. The Champernowne, Rudin-Shapiro, and Thue-Morse sequences, a further construction, J. Number Theory, 73 (1998), 256–276. doi: 10.1006/jnth.1998.2286.

[45]

C. Müllner, Automatic sequences fulfill the Sarnak conjecture, Duke Math. J., 166 (2017), 3219–3290. doi: 10.1215/00127094-2017-0024.

[46]

C. Müllner, Exponential Sum Estimates and Fourier Analytic Methods for Digitally Based Dynamical Systems, PhD thesis, Technische Universit at Wien, 2017.

[47]

K. Petersen, Ergodic Theory, vol. 2 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989, Corrected reprint of the 1983 original.

[48]

M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, vol. 1294 of Lecture Notes in Mathematics, 2nd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-11212-6.

[49]

T. Tao, Poincaré's Legacies, Pages from Year two of a Mathematical blog. Part I, American Mathematical Society, Providence, RI, 2009.

[50]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.

[51]

N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math., 63 (1941), 415–426. doi: 10.2307/2371534.

[52]

M. Wierdl, Pointwise ergodic theorems along the prime numbers, Israel J. Math., 64 (1988), 315-336. doi: 10.1007/BF02882425.

[53]

P. Zorin-Kranich, A double return times theorem, Israel J. Math., 204 (2014), 85–96, available at https://arXiv.org/abs/1506.05748. doi: 10.1007/s11856-014-1112-1.

show all references

References:
[1]

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci., 98 (1992), 163–197. doi: 10.1016/0304-3975(92)90001-V.

[2]

J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511546563.

[3]

I. Assani, A weighted pointwise ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 139–150. doi: 10.1016/S0246-0203(98)80021-6.

[4]

I. Assani, Wiener Wintner Ergodic Theorems, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/4538.

[5]

I. Assani and R. Moore, A good universal weight for multiple recurrence averages with commuting transformations in norm, Ergodic Theory Dynam. Systems, 37 (2017), 1009–1025, available at https://arXiv.org/abs/1506.06730. doi: 10.1017/etds.2015.76.

[6]

I. Assani and K. Presser, A survey of the return times theorem, in Ergodic Theory and Dynamical Systems, De Gruyter Proc. Math., De Gruyter, Berlin, 2014, 19–58.

[7]

J. P. Bell, M. Coons and K. G. Hare, The minimal growth of a k-regular sequence, Bull. Aust. Math. Soc., 90 (2014), 195–203. doi: 10.1017/S0004972714000197.

[8]

J. P. Bell, M. Coons and K. G. Hare, Growth degree classification for finitely generated semigroups of integer matrices, Semigroup Forum, 92 (2016), 23–44. doi: 10.1007/s00233-015-9725-1.

[9]

A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 288 (1985), 307–345, URL http://dx.doi.org/10.2307/2000442. doi: 10.1090/S0002-9947-1985-0773063-8.

[10]

D. Berend, M. Lin, J. Rosenblatt and A. Tempelman, Modulated and subsequential ergodic theorems in Hilbert and Banach spaces, Ergodic Theory Dynam. Systems, 22 (2002), 1653–1665. doi: 10.1017/S0143385702000846.

[11]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 5–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__5_0, With an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein.

[12]

J. Bourgain, H. Furstenberg, Y. Katznelson and D. S. Ornstein, Appendix on return-time sequences, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 42–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__42_0.

[13]

Z. Buczolich and R. D. Mauldin, Divergent square averages, Ann. of Math. (2), 171 (2010), 1479–1530. doi: 10.4007/annals.2010.171.1479.

[14]

Q. Chu, Convergence of weighted polynomial multiple ergodic averages, Proc. Amer. Math. Soc., 137 (2009), 1363–1369. doi: 10.1090/S0002-9939-08-09614-7.

[15]

D. Cömez, M. Lin and J. Olsen, Weighted ergodic theorems for mean ergodic L1- contractions, Trans. Amer. Math. Soc., 350 (1998), 101–117. doi: 10.1090/S0002-9947-98-01986-2.

[16]

C. Cuny and M. Weber, Ergodic theorems with arithmetical weights, Israel J. Math., 217 (2017), 139-180. doi: 10.1007/s11856-017-1441-y.

[17]

S. Drappeau and C. Müllner, Exponential sums with automatic sequences, 2017, Preprint, available at https://arXiv.org/abs/1710.01091.

[18]

M. Drmota and J. F. Morgenbesser, Generalized Thue-Morse sequences of squares, Israel J. Math., 190 (2012), 157–193. doi: 10.1007/s11856-011-0186-2.

[19]

P. Dumas, Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences, Linear Algebra Appl., 438 (2013), 2107–2126. doi: 10.1016/j.laa.2012.10.013.

[20]

P. Dumas, Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: algebraic and analytic approaches collated, Theoret. Comput. Sci., 548 (2014), 25–53. doi: 10.1016/j.tcs.2014.06.036.

[21]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, vol. 259 of Graduate Texts in Mathematics, Springer-Verlag London, Ltd., London, 2011. doi: 10.1007/978-0-85729-021-2.

[22]

T. Eisner, A polynomial version of Sarnak's conjecture, C. R. Math. Acad. Sci. Paris, 353 (2015), 569–572. doi: 10.1016/j.crma.2015.04.009.

[23]

T. Eisner, Linear sequences and weighted ergodic theorems, Abstr. Appl. Anal., (2013), Art. ID 815726, 5 pp.

[24]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, vol. 272 of Graduate Texts in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.

[25]

T. Eisner and B. Krause, (Uniform) convergence of twisted ergodic averages, Ergodic Theory Dynam. Systems, 36 (2016), 2172–2202. doi: 10.1017/etds.2015.6.

[26]

T. Eisner and P. Zorin-Kranich, Uniformity in the Wiener-Wintner theorem for nilsequences, Discrete Contin. Dyn. Syst., 33 (2013), 3497–3516. doi: 10.3934/dcds.2013.33.3497.

[27]

E. H. El Abdalaoui, J. Ku laga-Przymus, M. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst., 37 (2017), 2899–2944. doi: 10.3934/dcds.2017125.

[28]

A.-H. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory and Dynamical Systems, (2017), 1-15. doi: 10.1017/etds.2017.81.

[29]

N. Frantzikinakis, Uniformity in the polynomial Wiener-Wintner theorem, Ergodic Theory Dynam. Systems, 26 (2006), 1061–1071. doi: 10.1017/S0143385706000204.

[30]

A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), 259-265. doi: 10.4064/aa-13-3-259-265.

[31]

B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465–540. doi: 10.4007/annals.2012.175.2.2.

[32]

B. Host and B. Kra, Uniformity seminorms on $ \ell^∞$ and applications, J. Anal. Math., 108 (2009), 219–276. doi: 10.1007/s11854-009-0024-1.

[33]

J. Konieczny, Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, 2017, Preprint, available at https://arXiv.org/abs/1611.09985.

[34]

B. Krause and P. Zorin-Kranich, A random pointwise ergodic theorem with Hardy field weights, Illinois J. Math., 59 (2015), 663–674, URL http://projecteuclid.org/euclid.ijm/1475266402.

[35]

P. LaVictoire, Universally L1-bad arithmetic sequences, J. Anal. Math., 113 (2011), 241–263. doi: 10.1007/s11854-011-0006-y.

[36]

E. Lesigne, Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner, Ergodic Theory Dynam. Systems, 10 (1990), 513– 521. doi: 10.1017/S014338570000571X.

[37]

E. Lesigne, Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes, Ergodic Theory Dynam. Systems, 13 (1993), 767-784.

[38]

E. Lesigne and C. Mauduit, Propriétés ergodiques des suites q-multiplicatives, Compositio Math., 100 (1996), 131–169, URL http://www.numdam.org/item?id=CM_1996__100_2_131_0.

[39]

E. Lesigne, C. Mauduit and B. Mossé, Le théorème ergodique le long d'une suite q-multiplicative, Compositio Math., 93 (1994), 49–79, URL http://www.numdam.org/item?id=CM_1994__93_1_49_0.

[40]

M. Lin, J. Olsen and A. Tempelman, On modulated ergodic theorems for Dunford-Schwartz operators, in Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997), 43 (1999), 542–567, URL http://projecteuclid.org/euclid.ijm/1255985110.

[41]

B. Martin, C. Mauduit and J. Rivat, Théorème des nombres premiers pour les fonctions digitales, Acta Arith., 165 (2014), 11–45. doi: 10.4064/aa165-1-2.

[42]

C. Mauduit, Automates finis et ensembles normaux, Ann. Inst. Fourier (Grenoble), 36 (1986), 1–25, URL http://www.numdam.org/item?id=AIF_1986__36_2_1_0. doi: 10.5802/aif.1044.

[43]

C. Mauduit, Propriétés arithmétiques des substitutions et automates infinis, Ann. Inst. Fourier (Grenoble), 56 (2006), 2525–2549, URL http://aif.cedram.org/item?id=AIF_200__56_7_2525_0, Numération, pavages, substitutions. doi: 10.5802/aif.2248.

[44]

C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences. Ⅱ. The Champernowne, Rudin-Shapiro, and Thue-Morse sequences, a further construction, J. Number Theory, 73 (1998), 256–276. doi: 10.1006/jnth.1998.2286.

[45]

C. Müllner, Automatic sequences fulfill the Sarnak conjecture, Duke Math. J., 166 (2017), 3219–3290. doi: 10.1215/00127094-2017-0024.

[46]

C. Müllner, Exponential Sum Estimates and Fourier Analytic Methods for Digitally Based Dynamical Systems, PhD thesis, Technische Universit at Wien, 2017.

[47]

K. Petersen, Ergodic Theory, vol. 2 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989, Corrected reprint of the 1983 original.

[48]

M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, vol. 1294 of Lecture Notes in Mathematics, 2nd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-11212-6.

[49]

T. Tao, Poincaré's Legacies, Pages from Year two of a Mathematical blog. Part I, American Mathematical Society, Providence, RI, 2009.

[50]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.

[51]

N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math., 63 (1941), 415–426. doi: 10.2307/2371534.

[52]

M. Wierdl, Pointwise ergodic theorems along the prime numbers, Israel J. Math., 64 (1988), 315-336. doi: 10.1007/BF02882425.

[53]

P. Zorin-Kranich, A double return times theorem, Israel J. Math., 204 (2014), 85–96, available at https://arXiv.org/abs/1506.05748. doi: 10.1007/s11856-014-1112-1.

[1]

Tanja Eisner, Pavel Zorin-Kranich. Uniformity in the Wiener-Wintner theorem for nilsequences. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3497-3516. doi: 10.3934/dcds.2013.33.3497

[2]

Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237

[3]

Seung Jun Chang, Jae Gil Choi. A Cameron-Storvick theorem for the analytic Feynman integral associated with Gaussian paths on a Wiener space and applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2225-2238. doi: 10.3934/cpaa.2018106

[4]

Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113

[5]

Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377

[6]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[7]

Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143

[8]

J. Delon, A. Desolneux, Jose-Luis Lisani, A. B. Petro. Automatic color palette. Inverse Problems & Imaging, 2007, 1 (2) : 265-287. doi: 10.3934/ipi.2007.1.265

[9]

Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

[10]

Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903

[11]

L. Igual, J. Preciozzi, L. Garrido, A. Almansa, V. Caselles, B. Rougé. Automatic low baseline stereo in urban areas. Inverse Problems & Imaging, 2007, 1 (2) : 319-348. doi: 10.3934/ipi.2007.1.319

[12]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

[13]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[14]

Rong Liu, Saini Jonathan Tishari. Automatic tracking and positioning algorithm for moving targets in complex environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1251-1264. doi: 10.3934/dcdss.2019086

[15]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[16]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

[17]

Alexandre I. Danilenko, Mariusz Lemańczyk. Spectral multiplicities for ergodic flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4271-4289. doi: 10.3934/dcds.2013.33.4271

[18]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[19]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

[20]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (55)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]