October  2018, 38(10): 5205-5220. doi: 10.3934/dcds.2018230

Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics

1. 

College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China

2. 

Department of Mathematics, Southwestern University of Finance and economics, Sichuan 611130, China

3. 

College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China

4. 

College of Mathematics and statistics, Chongqing University, Chongqing 401331, China

* Corresponding author: Zeng Rong and Shouming Zhou

Received  February 2018 Published  July 2018

Fund Project: The first author (Yang) is supported by Chongqing Normal University (Grant No. YKC18038). The third author (Zhou) is partly supported by the Science and Technology Research Program of Chongqing Municipal Education Commission, Natural Science Foundation of Chongqing. The fourth author (Mu) is supported by NSFC (Grant No. 11571062 and 11771062), the Basic and Advanced Research Project of CQC-STC (Grant No. cstc2015jcyjBX0007) and the Fundamental Research Funds for the Central Universities(Grant No. 106112016CDJXZ238826)

It was showed that the generalized Camassa-Holm equation possible development of singularities in finite time, and beyond the occurrence of wave breaking which exists either global conservative or dissipative solutions. In present paper, we will further investigate the uniqueness of global conservative solutions to it based on the characteristics. From a given conservative solution $u = u(t,x)$, an equation is introduced to single out a unique characteristic curve through each initial point. By analyzing the evolution of the quantities $u$ and $v = 2 \arctan u_x$ along each characteristic, it is obtained that the Cauchy problem with general initial data $u_0∈ H^1(\mathbb{R})$ has a unique global conservative solution.

Citation: Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rational Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[3]

A. BressanG. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics, Discrete. Contin. Dyn. Syst., 35 (2015), 25-42. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. CamassaD. D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0. Google Scholar

[6]

G. M. CocliteH. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. doi: 10.1137/040616711. Google Scholar

[7]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[8]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[9]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[10]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. doi: 10.1093/imamat/hxs033. Google Scholar

[11]

A. Costantin and J. Escher, Global existence of solutions and breaking waves for a shallow water equation, Ann. Sc. Norm. Super. Pisa CL. Sci., 26 (1998), 303-328. Google Scholar

[12]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[13]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[14]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[15]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x. Google Scholar

[16]

A. Constantin and W. Strauss, Stablity of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (2000), 140-148. doi: 10.1016/S0375-9601(00)00255-3. Google Scholar

[17]

C. Dafermos, Generalized characteristics and the Hunter-Saxton equation, J. Hyperbolic Diff. Equat., 8 (2011), 159-168. doi: 10.1142/S0219891611002366. Google Scholar

[18]

J. Eckhardt, The inverse spectral transform for the conservative Camassa-Holm flow with decaying initial data, Arch. Ration. Mech. Anal., 224 (2017), 21-52. doi: 10.1007/s00205-016-1066-z. Google Scholar

[19]

Q. FengF. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on times scales, J. Math. Anal. Appl., 382 (2011), 772-784. doi: 10.1016/j.jmaa.2011.04.077. Google Scholar

[20]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[21]

X. HaoL. LiuY. Wu and Q. Sun, Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions, Nonlinear Anal., 73 (2010), 1653-1662. doi: 10.1016/j.na.2010.04.074. Google Scholar

[22]

X. HeA. Qian and W. Zou, Existence and concentration of positive solutions for quasi-linear Schrodinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168. doi: 10.1088/0951-7715/26/12/3137. Google Scholar

[23]

F. Li, Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shell system, J. Differential Equations, 249 (2010), 1241-1257. doi: 10.1016/j.jde.2010.05.005. Google Scholar

[24]

O. Lopes, Stability of peakons for the generalized Camassa-Holm equation, Electron. J. Differential Equations, 2003 (2003), 1-12. Google Scholar

[25]

X. MaP. Wang and W. Wei, Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains, J. Funct. Anal., 274 (2018), 252-277. doi: 10.1016/j.jfa.2017.10.002. Google Scholar

[26]

T. Qian and M. Tang, Peakons and periodic cusp waves in a generalized Camassa-Holm equation, Chaos Solitons Fractals, 12 (2001), 1347-1460. doi: 10.1016/S0960-0779(00)00117-X. Google Scholar

[27]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos Solitons Fractals, 26 (2005), 1149-1162. doi: 10.1016/j.chaos.2005.02.021. Google Scholar

[28]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Solitons Fractals, 19 (2004), 621-637. doi: 10.1016/S0960-0779(03)00192-9. Google Scholar

[29]

P. Wang, The concavity of the Gaussian curvature of the convex level sets of minimal surfaces with respect to the height, Pacific J. Math., 267 (2014), 489-509. doi: 10.2140/pjm.2014.267.489. Google Scholar

[30]

P. Wang and L. Zhao, Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Anal., 130 (2016), 1-17. doi: 10.1016/j.na.2015.09.021. Google Scholar

[31]

P. Wang and D. Zhang, Convexity of Level Sets of Minimal Graph on Space Form with Nonnegative Curvature, J. Differential Equations, 262 (2017), 5534-5564. doi: 10.1016/j.jde.2017.02.010. Google Scholar

[32]

P. Wang and D. Zhang, Convexity of Level Sets of Minimal Graph on Space Form with Nonnegative Curvature, J. Differential Equations, 262 (2017), 5534-5564. doi: 10.1016/j.jde.2017.02.010. Google Scholar

[33]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation, Comm. Partial Differential Equations, 29 (2004), 867-877. doi: 10.1081/PDE-120037334. Google Scholar

[34]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation, Nonlinear Analysis, 66 (2007), 460-471. doi: 10.1016/j.na.2005.11.040. Google Scholar

[35]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation, J. Nonlinear Math. Phys., 10 (2003), 10-15. doi: 10.2991/jnmp.2003.10.1.2. Google Scholar

[36]

S. ZhouZ. QiaoZhijunC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933. doi: 10.1016/j.jde.2017.03.002. Google Scholar

[37]

S. Zhou and C. Mu, Global conservative solutions and dissipative solutions of the generalized Camassa-Holm equation, Discrete. Contin. Dyn. Syst., 4 (2013), 1713-1739. doi: 10.3934/dcds.2013.33.1713. Google Scholar

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rational Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[2]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27. doi: 10.1142/S0219530507000857. Google Scholar

[3]

A. BressanG. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics, Discrete. Contin. Dyn. Syst., 35 (2015), 25-42. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. CamassaD. D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0. Google Scholar

[6]

G. M. CocliteH. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. doi: 10.1137/040616711. Google Scholar

[7]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[8]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[9]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[10]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. doi: 10.1093/imamat/hxs033. Google Scholar

[11]

A. Costantin and J. Escher, Global existence of solutions and breaking waves for a shallow water equation, Ann. Sc. Norm. Super. Pisa CL. Sci., 26 (1998), 303-328. Google Scholar

[12]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[13]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[14]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[15]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x. Google Scholar

[16]

A. Constantin and W. Strauss, Stablity of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (2000), 140-148. doi: 10.1016/S0375-9601(00)00255-3. Google Scholar

[17]

C. Dafermos, Generalized characteristics and the Hunter-Saxton equation, J. Hyperbolic Diff. Equat., 8 (2011), 159-168. doi: 10.1142/S0219891611002366. Google Scholar

[18]

J. Eckhardt, The inverse spectral transform for the conservative Camassa-Holm flow with decaying initial data, Arch. Ration. Mech. Anal., 224 (2017), 21-52. doi: 10.1007/s00205-016-1066-z. Google Scholar

[19]

Q. FengF. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on times scales, J. Math. Anal. Appl., 382 (2011), 772-784. doi: 10.1016/j.jmaa.2011.04.077. Google Scholar

[20]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[21]

X. HaoL. LiuY. Wu and Q. Sun, Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions, Nonlinear Anal., 73 (2010), 1653-1662. doi: 10.1016/j.na.2010.04.074. Google Scholar

[22]

X. HeA. Qian and W. Zou, Existence and concentration of positive solutions for quasi-linear Schrodinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168. doi: 10.1088/0951-7715/26/12/3137. Google Scholar

[23]

F. Li, Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shell system, J. Differential Equations, 249 (2010), 1241-1257. doi: 10.1016/j.jde.2010.05.005. Google Scholar

[24]

O. Lopes, Stability of peakons for the generalized Camassa-Holm equation, Electron. J. Differential Equations, 2003 (2003), 1-12. Google Scholar

[25]

X. MaP. Wang and W. Wei, Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains, J. Funct. Anal., 274 (2018), 252-277. doi: 10.1016/j.jfa.2017.10.002. Google Scholar

[26]

T. Qian and M. Tang, Peakons and periodic cusp waves in a generalized Camassa-Holm equation, Chaos Solitons Fractals, 12 (2001), 1347-1460. doi: 10.1016/S0960-0779(00)00117-X. Google Scholar

[27]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos Solitons Fractals, 26 (2005), 1149-1162. doi: 10.1016/j.chaos.2005.02.021. Google Scholar

[28]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Solitons Fractals, 19 (2004), 621-637. doi: 10.1016/S0960-0779(03)00192-9. Google Scholar

[29]

P. Wang, The concavity of the Gaussian curvature of the convex level sets of minimal surfaces with respect to the height, Pacific J. Math., 267 (2014), 489-509. doi: 10.2140/pjm.2014.267.489. Google Scholar

[30]

P. Wang and L. Zhao, Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Anal., 130 (2016), 1-17. doi: 10.1016/j.na.2015.09.021. Google Scholar

[31]

P. Wang and D. Zhang, Convexity of Level Sets of Minimal Graph on Space Form with Nonnegative Curvature, J. Differential Equations, 262 (2017), 5534-5564. doi: 10.1016/j.jde.2017.02.010. Google Scholar

[32]

P. Wang and D. Zhang, Convexity of Level Sets of Minimal Graph on Space Form with Nonnegative Curvature, J. Differential Equations, 262 (2017), 5534-5564. doi: 10.1016/j.jde.2017.02.010. Google Scholar

[33]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation, Comm. Partial Differential Equations, 29 (2004), 867-877. doi: 10.1081/PDE-120037334. Google Scholar

[34]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation, Nonlinear Analysis, 66 (2007), 460-471. doi: 10.1016/j.na.2005.11.040. Google Scholar

[35]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation, J. Nonlinear Math. Phys., 10 (2003), 10-15. doi: 10.2991/jnmp.2003.10.1.2. Google Scholar

[36]

S. ZhouZ. QiaoZhijunC. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933. doi: 10.1016/j.jde.2017.03.002. Google Scholar

[37]

S. Zhou and C. Mu, Global conservative solutions and dissipative solutions of the generalized Camassa-Holm equation, Discrete. Contin. Dyn. Syst., 4 (2013), 1713-1739. doi: 10.3934/dcds.2013.33.1713. Google Scholar

Figure 1.  The Lipschitz continuous text function $\varphi^\epsilon$ introduced at (32)
[1]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[2]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[3]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[4]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[5]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[6]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[7]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[8]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[9]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[10]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[11]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[12]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[13]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[14]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[15]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[16]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[17]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[18]

Octavian G. Mustafa. Global conservative solutions of the Dullin-Gottwald-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 575-594. doi: 10.3934/dcds.2007.19.575

[19]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[20]

Xingxing Liu, Zhijun Qiao, Zhaoyang Yin. On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1283-1304. doi: 10.3934/cpaa.2014.13.1283

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (74)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]