January  2019, 39(1): 483-502. doi: 10.3934/dcds.2019020

Uniqueness of limit cycles for quadratic vector fields

Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06006, Spain

* Corresponding author: J. L. Bravo

Received  April 2018 Published  October 2018

Fund Project: The first two authors were partially supported by AEI/FEDER UE grant number MTM 2011-22751 and Junta de Extremadura grant GR15055 (Junta de Extremadura/FEDER funds). The third author was partially supported by the research group FQM-024 (Junta de Extremadura/FEDER funds) and by the project MTM2015-65764-C3-1-P (MINECO/FEDER, UE). The fourth author was partially supported by Junta de Extremadura grant GR15055 (Junta de Extremadura/FEDER funds).

This article deals with the study of the number of limit cycles surrounding a critical point of a quadratic planar vector field, which, in normal form, can be written as $x' = a_1 x-y-a_3x^2+(2 a_2+a_5)xy + a_6 y^2$, $y' = x+a_1 y + a_2x^2+(2 a_3+a_4)xy -a_2y^2$. In particular, we study the semi-varieties defined in terms of the parameters $a_1, a_2, ..., a_6$ where some classical criteria for the associated Abel equation apply. The proofs will combine classical ideas with tools from computational algebraic geometry.

Citation: José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020
References:
[1]

M. J. ÁlvarezA. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 129-152.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Halsted Press (A division of John Wiley & Sons), Israel Program for Scientific Translations Jerusalem-London, 1973.  Google Scholar

[4]

O. Bachmann, G.-M. Greuel, C. Lossen, G. Pfister and H. Schönemann, A Singular Introduction to Commutative Algebra, Springer, Berlin, 2007. Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or centre type, American Math. Soc. Translation, 1954 (1954), 19pp.  Google Scholar

[6]

J. L. BravoM. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Int. J. Bif. Chaos, 19 (2009), 3869-3876.  doi: 10.1142/S0218127409025195.  Google Scholar

[7]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions, J. Math. Anal. Appl., 342 (2008), 931-942.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[8]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system, Diff. Eq., 5 (1976), 666-668.   Google Scholar

[9]

B. CollA. Gasull and J. Llibre, Some theorems on the existence, uniqueness and non existence of limit cycles for quadratic systems, J. Differential Equations, 67 (1987), 372-399.  doi: 10.1016/0022-0396(87)90133-1.  Google Scholar

[10]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Second Edition, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997. doi: 10.1007/978-3-319-16721-3.  Google Scholar

[11]

W. Decker, G. M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A Computer Algebra System for Polynomial Computations, http://www.singular.uni-kl.de (2016). Google Scholar

[12]

G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math., 57 (1953), 15-31.  doi: 10.2307/1969724.  Google Scholar

[13]

H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre, Bull. Soc. Math. France, 32 (1908), 230-252.   Google Scholar

[14]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations, Int. J. Bif. Chaos, 16 (2006), 3737-3745.  doi: 10.1142/S0218127406017130.  Google Scholar

[15]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar

[16]

P. GianniB. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomial ideals, Computational Aspects of Commutative Algebra, J. Symbolic Comput., 6 (1988), 149-167.  doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[17]

J. Huang and Y. Zhao, Periodic solutions for equation $x' = A(t)x^m + B(t)x^n + C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar

[18]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt} = \sum_{j = 0}^n a_j(t)x^j$, $0≤ t≤ 1$, for which $x(0) = x(1)$, Inv. Math., 59 (1980), 67-76.  doi: 10.1007/BF01390315.  Google Scholar

[19]

J. Llibre and Xiang Zhang, The non-existence, existence and uniqueness of limit cycles for quadratic polynomial differential systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2017), 1-14.  doi: 10.1017/S0308210517000221.  Google Scholar

[20]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[21]

D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Reprint of the 1976 Edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[22]

A. A. Panov, The number of periodic solutions of polynomial differential equations, Math. Notes, 64 (1998), 622-628.  doi: 10.1007/BF02316287.  Google Scholar

[23]

L. M. Perko, Differential Equations and Dynamical Systems, Third edition, Texts in Applied Mathematics 7, Springer–Verlag, New York [etc.], 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[24]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations, Academic Press, New York, 1966.  Google Scholar

[25]

V. G. Romanovski and D. S. Shafer, The Centre and Cyclicity Problems. A Computational Algebra Approach, Birkhäuser, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[26]

J. Sotomayor, Curvas Definidas Por Equaçöes Diferenciais no Plano, IMPA, Rio de Janeiro, 1981.  Google Scholar

show all references

References:
[1]

M. J. ÁlvarezA. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 129-152.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Halsted Press (A division of John Wiley & Sons), Israel Program for Scientific Translations Jerusalem-London, 1973.  Google Scholar

[4]

O. Bachmann, G.-M. Greuel, C. Lossen, G. Pfister and H. Schönemann, A Singular Introduction to Commutative Algebra, Springer, Berlin, 2007. Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or centre type, American Math. Soc. Translation, 1954 (1954), 19pp.  Google Scholar

[6]

J. L. BravoM. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Int. J. Bif. Chaos, 19 (2009), 3869-3876.  doi: 10.1142/S0218127409025195.  Google Scholar

[7]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions, J. Math. Anal. Appl., 342 (2008), 931-942.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[8]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system, Diff. Eq., 5 (1976), 666-668.   Google Scholar

[9]

B. CollA. Gasull and J. Llibre, Some theorems on the existence, uniqueness and non existence of limit cycles for quadratic systems, J. Differential Equations, 67 (1987), 372-399.  doi: 10.1016/0022-0396(87)90133-1.  Google Scholar

[10]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Second Edition, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997. doi: 10.1007/978-3-319-16721-3.  Google Scholar

[11]

W. Decker, G. M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A Computer Algebra System for Polynomial Computations, http://www.singular.uni-kl.de (2016). Google Scholar

[12]

G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math., 57 (1953), 15-31.  doi: 10.2307/1969724.  Google Scholar

[13]

H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre, Bull. Soc. Math. France, 32 (1908), 230-252.   Google Scholar

[14]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations, Int. J. Bif. Chaos, 16 (2006), 3737-3745.  doi: 10.1142/S0218127406017130.  Google Scholar

[15]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar

[16]

P. GianniB. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomial ideals, Computational Aspects of Commutative Algebra, J. Symbolic Comput., 6 (1988), 149-167.  doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[17]

J. Huang and Y. Zhao, Periodic solutions for equation $x' = A(t)x^m + B(t)x^n + C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar

[18]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt} = \sum_{j = 0}^n a_j(t)x^j$, $0≤ t≤ 1$, for which $x(0) = x(1)$, Inv. Math., 59 (1980), 67-76.  doi: 10.1007/BF01390315.  Google Scholar

[19]

J. Llibre and Xiang Zhang, The non-existence, existence and uniqueness of limit cycles for quadratic polynomial differential systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2017), 1-14.  doi: 10.1017/S0308210517000221.  Google Scholar

[20]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[21]

D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Reprint of the 1976 Edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[22]

A. A. Panov, The number of periodic solutions of polynomial differential equations, Math. Notes, 64 (1998), 622-628.  doi: 10.1007/BF02316287.  Google Scholar

[23]

L. M. Perko, Differential Equations and Dynamical Systems, Third edition, Texts in Applied Mathematics 7, Springer–Verlag, New York [etc.], 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[24]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations, Academic Press, New York, 1966.  Google Scholar

[25]

V. G. Romanovski and D. S. Shafer, The Centre and Cyclicity Problems. A Computational Algebra Approach, Birkhäuser, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[26]

J. Sotomayor, Curvas Definidas Por Equaçöes Diferenciais no Plano, IMPA, Rio de Janeiro, 1981.  Google Scholar

Table 1.  Codimensions of the semi-varieties.
Case Point $c_p$ $c_I$
1a) $a_1=1$, $a_2=0$, $a_3=1$, $a_4=-3$, $a_5=0$, $a_6=0$. 4 4
1b) $a_1=1$, $a_2=1$, $a_3=-1$, $a_4=2$, $a_5=-4$, $a_6=1$. 4 4
2) $a_1=-1$, $a_2=\sqrt{14}$, $a_3=-2$,
$a_4=-1$, $a_5=-3 \sqrt{14}$, $a_6=0$.
3 3
3a) $a_1=-1$, $a_2=(201 + 2 \sqrt{1509})/58$,
$a_3=(-33 + 4 \sqrt{1509})/58$, $a_4=-1$,
$a_5=-16$, $a_6=(-201 - 2 \sqrt{1509})/58)$
3 3
3b) $a_1=0$, $a_2=0$, $a_3=0$, $a_4=1$, $a_5=-2$, $a_6=-1$. 5 5
4) $a_1=1$, $a_2=0$, $a_3=1/3$, $a_4=-1$, $a_5=-1$, $a_6=0$. 3 3
5a) $a_1=0$, $a_2=1$, $a_3=-15/16$,
$a_4=-53/16$, $a_5=(-941 - 31 \sqrt{7913})/512$, $a_6=1$.
1 1
5b) $a_1=0$, $a_2=(4096 - 7 \sqrt{1726})/16384$, $a_3=0$,
$a_4=-(58339673 + 28672 \sqrt{1726})/94666752$,
$a_5=-1$, $a_6=-2889/16384$.
2 2
5c) $a_1=1$, $a_2=4$, $a_3=-12$, $a_4=30$, $a_5=-15$, $a_6=1/2$ * 2
5d) $a_1=0$, $a_2=\sqrt{185}/32$, $a_3=0$,
$a_4=-1$, $a_5=-3 \sqrt{185}/32$, $a_6=-5/32$
2 2
5e) $a_1=0$, $a_2=2 \sqrt{2}$, $a_3=-1$, $a_4=0$, $a_5=-9 \sqrt{2}$, $a_6=8$ * 2
5f) $a_1=0$, $a_2=2/3$, $a_3=0$, $a_4=-1$, $a_5=-2$, $a_6=-1/3$ 3 2
5g) $a_1=0$, $a_2=1$, $a_3=-9/2$, $a_4=15/2$, $a_5=-15$, $a_6=8$ * 2
5h) $a_1=0$, $a_2=1$, $a_3=-8$, $a_4=35/2$, $a_5=-15$, $a_6=9/2$ * 2
Case Point $c_p$ $c_I$
1a) $a_1=1$, $a_2=0$, $a_3=1$, $a_4=-3$, $a_5=0$, $a_6=0$. 4 4
1b) $a_1=1$, $a_2=1$, $a_3=-1$, $a_4=2$, $a_5=-4$, $a_6=1$. 4 4
2) $a_1=-1$, $a_2=\sqrt{14}$, $a_3=-2$,
$a_4=-1$, $a_5=-3 \sqrt{14}$, $a_6=0$.
3 3
3a) $a_1=-1$, $a_2=(201 + 2 \sqrt{1509})/58$,
$a_3=(-33 + 4 \sqrt{1509})/58$, $a_4=-1$,
$a_5=-16$, $a_6=(-201 - 2 \sqrt{1509})/58)$
3 3
3b) $a_1=0$, $a_2=0$, $a_3=0$, $a_4=1$, $a_5=-2$, $a_6=-1$. 5 5
4) $a_1=1$, $a_2=0$, $a_3=1/3$, $a_4=-1$, $a_5=-1$, $a_6=0$. 3 3
5a) $a_1=0$, $a_2=1$, $a_3=-15/16$,
$a_4=-53/16$, $a_5=(-941 - 31 \sqrt{7913})/512$, $a_6=1$.
1 1
5b) $a_1=0$, $a_2=(4096 - 7 \sqrt{1726})/16384$, $a_3=0$,
$a_4=-(58339673 + 28672 \sqrt{1726})/94666752$,
$a_5=-1$, $a_6=-2889/16384$.
2 2
5c) $a_1=1$, $a_2=4$, $a_3=-12$, $a_4=30$, $a_5=-15$, $a_6=1/2$ * 2
5d) $a_1=0$, $a_2=\sqrt{185}/32$, $a_3=0$,
$a_4=-1$, $a_5=-3 \sqrt{185}/32$, $a_6=-5/32$
2 2
5e) $a_1=0$, $a_2=2 \sqrt{2}$, $a_3=-1$, $a_4=0$, $a_5=-9 \sqrt{2}$, $a_6=8$ * 2
5f) $a_1=0$, $a_2=2/3$, $a_3=0$, $a_4=-1$, $a_5=-2$, $a_6=-1/3$ 3 2
5g) $a_1=0$, $a_2=1$, $a_3=-9/2$, $a_4=15/2$, $a_5=-15$, $a_6=8$ * 2
5h) $a_1=0$, $a_2=1$, $a_3=-8$, $a_4=35/2$, $a_5=-15$, $a_6=9/2$ * 2
[1]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[2]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[3]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[6]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[7]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[8]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[9]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[10]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[11]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[12]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[13]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[14]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[15]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[20]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (122)
  • HTML views (126)
  • Cited by (0)

[Back to Top]