April 2019, 39(4): 1613-1650. doi: 10.3934/dcds.2019072

On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data

Département de Mathématiques, Faculté des Sciences de Tunis, Université de Tunis El Manar 2092 Tunis, Tunisia

Received  June 2017 Revised  June 2018 Published  January 2019

In this paper we prove the global well-posedness for the Three dimensional Boussinesq system with axisymmetric initial data. This system couples the Navier-Stokes equation with vanishing the horizontal viscosity with a transport-diffusion equation governing the temperature.

Citation: Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072
References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Eq., 233 (2007), 199-220. doi: 10.1016/j.jde.2006.10.008.

[2]

H. AbidiT. Hmidi and S. Keraani, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Contin. Dym. Syst., 29 (2011), 737-756. doi: 10.3934/dcds.2011.29.737.

[3]

H. Abidi and P. Marius, On the global well-posedness of 3-D Navier-Stokes equations with vanishing horizontal viscosity, Differential and Integral Equations, 31 (2018), 329-352.

[4]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[5]

J. T. BealeT. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler Equations, Commun. Math. Phys, 94 (1984), 61-66. doi: 10.1007/BF01212349.

[6]

J. Ben Ameur and R. Danchin, Limite non visqueuse pour les fluides incompressibles axisymétriques, in Nonlinear Partial Differential Equations and their Applications: Coll ge de France Seminar Volume XIV (eds. D. Cioranescu and J.-L. Lions), Elsevier, Academic Press, Stud. Math. Appl, 31, North. Holland, Amsterdam, (2002), 29–55. doi: 10.1016/S0168-2024(02)80004-2.

[7]

C. BernardiB. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: Le modèle et son approximation par élément finis, RAIRO Modél. Math. Anal. Numér, 29 (1995), 871-921. doi: 10.1051/m2an/1995290708711.

[8]

J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér., 14 (1981), 209-246. doi: 10.24033/asens.1404.

[9]

J. Boussinesq, Théorie Analytique De La Chaleur, Gauthier-Villars, Paris, 1903.

[10]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscous terms, Adv. in Math, 203 (2006), 497-513. doi: 10.1016/j.aim.2005.05.001.

[11]

M. Cwikel, On $\bigl(L^{p_0}(A_0),L^{p_1}(A_1)\bigr)_{\theta,q}$, Proc. Amer. Math. Soc., 44 (1974), 286-292. doi: 10.1090/S0002-9939-1974-0358326-0.

[12]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D., 237 (2008), 1444-1460. doi: 10.1016/j.physd.2008.03.034.

[13]

R. Danchin and M. Paicu, Les théorèmes de Leray de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. math. France., 136 (2008), 261-309. doi: 10.24033/bsmf.2557.

[14]

R. Danchin, Axisymmetric incompressible flows with bounded vorticity, Russ. Math. Surv., 62 (2007), 475-496. doi: 10.4213/rm6761.

[15]

E. Feireisl and A. Novotny, The Oberbeck-Boussinesq approximation as a singular limit of the full Navier-Stokes-Fourier system, J. Math. Fluid. Mech., 11 (2009), 274-302. doi: 10.1007/s00021-007-0259-5.

[16] T. M. Fleet, Differential Analysis, Cambridge University Press, 1980.
[17]

L. Grafakos, Classical Fourier Analysis, 2nd edition, Springer, New York, 2008. doi: 10.1007/978-0-387-09432-8.

[18]

T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618. doi: 10.1512/iumj.2009.58.3590.

[19]

T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations., 12 (2007), 461-480.

[20]

T. HmidiS. Keraani and F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation, comm, Part. Diff. Eqs., 36 (2011), 420-445. doi: 10.1080/03605302.2010.518657.

[21]

T. HmidiS. Keraani and F. Rousset, Global well-posedness for Boussinesq-Navier-Stokes system with critical dissipation, J. Diff. Eqs., 249 (2010), 2147-2174. doi: 10.1016/j.jde.2010.07.008.

[22]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Functional Analysis, 260 (2011), 745-796. doi: 10.1016/j.jfa.2010.10.012.

[23]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. Inst. H. Poincaré Anal. Non Linéaire., 27 (2010), 1227-1246. doi: 10.1016/j.anihpc.2010.06.001.

[24]

T. Hou and C. Li, Global well- posedness of the viscous Boussinesq equations, Discrete contin. Dyn. Syst., 12 (2005), 1-12. doi: 10.3934/dcds.2005.12.1.

[25]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zapisky Nauchnych Sem. LOMI, 7 (1968), 155-177.

[26]

P.-G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, 1nd edition, Chapman & Hall/CRC Research Notes in Mathematics, 2002. doi: 10.1201/9781420035674.

[27]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant lespace, Acta Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.

[28]

C. Miao and X. Zheng, Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, J. Math. Pures Appl., 101 (2014), 842-872. doi: 10.1016/j.matpur.2013.10.007.

[29]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Commun. Math. Phys., 321 (2013), 33-67. doi: 10.1007/s00220-013-1721-2.

[30] A. Miranville and R. Temam, Mathematical Modeling in Continuum Mechanics, 2 edition, Cambridge University Press, New York, 2005. doi: 10.1017/CBO9780511755422.
[31]

R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J, 30 (1963), 129-142. doi: 10.1215/S0012-7094-63-03015-1.

[32]

T. Shirota and T. Yanagisawa, Note on global existence for axially symmetric solutions of the Euler system, Proc. Jpn. Acad., Ser. A, Math. Sci., 70 (1994), 299-304. doi: 10.3792/pjaa.70.299.

[33]

H. Triebel, Interpolation theory, function spaces, differential operators, Bull. Amer. Math. Soc., 2 (1980), 339-345.

[34]

M. Ukhovskii and V. Yudovitch, Axially symmetric flows of ideal and viscous fluids filling the whole space, Journal of applied mathematics and mechanics., 32 (1968), 52-61. doi: 10.1016/0021-8928(68)90147-0.

show all references

References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Eq., 233 (2007), 199-220. doi: 10.1016/j.jde.2006.10.008.

[2]

H. AbidiT. Hmidi and S. Keraani, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Contin. Dym. Syst., 29 (2011), 737-756. doi: 10.3934/dcds.2011.29.737.

[3]

H. Abidi and P. Marius, On the global well-posedness of 3-D Navier-Stokes equations with vanishing horizontal viscosity, Differential and Integral Equations, 31 (2018), 329-352.

[4]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[5]

J. T. BealeT. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler Equations, Commun. Math. Phys, 94 (1984), 61-66. doi: 10.1007/BF01212349.

[6]

J. Ben Ameur and R. Danchin, Limite non visqueuse pour les fluides incompressibles axisymétriques, in Nonlinear Partial Differential Equations and their Applications: Coll ge de France Seminar Volume XIV (eds. D. Cioranescu and J.-L. Lions), Elsevier, Academic Press, Stud. Math. Appl, 31, North. Holland, Amsterdam, (2002), 29–55. doi: 10.1016/S0168-2024(02)80004-2.

[7]

C. BernardiB. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: Le modèle et son approximation par élément finis, RAIRO Modél. Math. Anal. Numér, 29 (1995), 871-921. doi: 10.1051/m2an/1995290708711.

[8]

J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér., 14 (1981), 209-246. doi: 10.24033/asens.1404.

[9]

J. Boussinesq, Théorie Analytique De La Chaleur, Gauthier-Villars, Paris, 1903.

[10]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscous terms, Adv. in Math, 203 (2006), 497-513. doi: 10.1016/j.aim.2005.05.001.

[11]

M. Cwikel, On $\bigl(L^{p_0}(A_0),L^{p_1}(A_1)\bigr)_{\theta,q}$, Proc. Amer. Math. Soc., 44 (1974), 286-292. doi: 10.1090/S0002-9939-1974-0358326-0.

[12]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D., 237 (2008), 1444-1460. doi: 10.1016/j.physd.2008.03.034.

[13]

R. Danchin and M. Paicu, Les théorèmes de Leray de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. math. France., 136 (2008), 261-309. doi: 10.24033/bsmf.2557.

[14]

R. Danchin, Axisymmetric incompressible flows with bounded vorticity, Russ. Math. Surv., 62 (2007), 475-496. doi: 10.4213/rm6761.

[15]

E. Feireisl and A. Novotny, The Oberbeck-Boussinesq approximation as a singular limit of the full Navier-Stokes-Fourier system, J. Math. Fluid. Mech., 11 (2009), 274-302. doi: 10.1007/s00021-007-0259-5.

[16] T. M. Fleet, Differential Analysis, Cambridge University Press, 1980.
[17]

L. Grafakos, Classical Fourier Analysis, 2nd edition, Springer, New York, 2008. doi: 10.1007/978-0-387-09432-8.

[18]

T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618. doi: 10.1512/iumj.2009.58.3590.

[19]

T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations., 12 (2007), 461-480.

[20]

T. HmidiS. Keraani and F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation, comm, Part. Diff. Eqs., 36 (2011), 420-445. doi: 10.1080/03605302.2010.518657.

[21]

T. HmidiS. Keraani and F. Rousset, Global well-posedness for Boussinesq-Navier-Stokes system with critical dissipation, J. Diff. Eqs., 249 (2010), 2147-2174. doi: 10.1016/j.jde.2010.07.008.

[22]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Functional Analysis, 260 (2011), 745-796. doi: 10.1016/j.jfa.2010.10.012.

[23]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. Inst. H. Poincaré Anal. Non Linéaire., 27 (2010), 1227-1246. doi: 10.1016/j.anihpc.2010.06.001.

[24]

T. Hou and C. Li, Global well- posedness of the viscous Boussinesq equations, Discrete contin. Dyn. Syst., 12 (2005), 1-12. doi: 10.3934/dcds.2005.12.1.

[25]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zapisky Nauchnych Sem. LOMI, 7 (1968), 155-177.

[26]

P.-G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, 1nd edition, Chapman & Hall/CRC Research Notes in Mathematics, 2002. doi: 10.1201/9781420035674.

[27]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant lespace, Acta Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.

[28]

C. Miao and X. Zheng, Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, J. Math. Pures Appl., 101 (2014), 842-872. doi: 10.1016/j.matpur.2013.10.007.

[29]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Commun. Math. Phys., 321 (2013), 33-67. doi: 10.1007/s00220-013-1721-2.

[30] A. Miranville and R. Temam, Mathematical Modeling in Continuum Mechanics, 2 edition, Cambridge University Press, New York, 2005. doi: 10.1017/CBO9780511755422.
[31]

R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J, 30 (1963), 129-142. doi: 10.1215/S0012-7094-63-03015-1.

[32]

T. Shirota and T. Yanagisawa, Note on global existence for axially symmetric solutions of the Euler system, Proc. Jpn. Acad., Ser. A, Math. Sci., 70 (1994), 299-304. doi: 10.3792/pjaa.70.299.

[33]

H. Triebel, Interpolation theory, function spaces, differential operators, Bull. Amer. Math. Soc., 2 (1980), 339-345.

[34]

M. Ukhovskii and V. Yudovitch, Axially symmetric flows of ideal and viscous fluids filling the whole space, Journal of applied mathematics and mechanics., 32 (1968), 52-61. doi: 10.1016/0021-8928(68)90147-0.

[1]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[2]

Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani. On the global regularity of axisymmetric Navier-Stokes-Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 737-756. doi: 10.3934/dcds.2011.29.737

[3]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[4]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[5]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[6]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[7]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[8]

Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043

[9]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[10]

Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017

[11]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[12]

Enrique Fernández-Cara, Diego A. Souza. On the control of some coupled systems of the Boussinesq kind with few controls. Mathematical Control & Related Fields, 2012, 2 (2) : 121-140. doi: 10.3934/mcrf.2012.2.121

[13]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[14]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[15]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[16]

Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457

[17]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[18]

Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications. Networks & Heterogeneous Media, 2006, 1 (4) : 601-619. doi: 10.3934/nhm.2006.1.601

[19]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[20]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (93)
  • HTML views (108)
  • Cited by (0)

Other articles
by authors

[Back to Top]