# American Institute of Mathematical Sciences

April  2019, 39(4): 1821-1889. doi: 10.3934/dcds.2019079

## A non-local problem for the Fokker-Planck equation related to the Becker-Döring model

 1 University of Michigan, Department of Mathematics, Ann Arbor, MI 48109-1109, USA 2 Universität Bonn, Institut für Angewandte Mathematik, Endenicher Allee 60, 53129 Bonn, Germany

* Corresponding author

Received  November 2017 Revised  September 2018 Published  January 2019

This paper concerns a Fokker-Planck equation on the positive real line modeling nucleation and growth of clusters. The main feature of the equation is the dependence of the driving vector field and boundary condition on a non-local order parameter related to the excess mass of the system.

The first main result concerns the well-posedness and regularity of the Cauchy problem. The well-posedness is based on a fixed point argument, and the regularity on Schauder estimates. The first a priori estimates yield Hölder regularity of the non-local order parameter, which is improved by an iteration argument.

The asymptotic behavior of solutions depends on some order parameter $\rho$ depending on the initial data. The system shows different behavior depending on a value $\rho_s>0$, determined from the potentials and diffusion coefficient. For $\rho \leq \rho_s$, there exists an equilibrium solution $c^ {{ \rm{eq}}} _{(\rho)}$. If $\rho\le\rho_s$ the solution converges strongly to $c^ {{ \rm{eq}}} _{(\rho)}$, while if $\rho > \rho_s$ the solution converges weakly to $c^ {{ \rm{eq}}} _{(\rho_s)}$. The excess $\rho - \rho_s$ gets lost due to the formation of larger and larger clusters. In this regard, the model behaves similarly to the classical Becker-Döring equation.

The system possesses a free energy, strictly decreasing along the evolution, which establishes the long time behavior. In the subcritical case $\rho<\rho_s$ the entropy method, based on suitable weighted logarithmic Sobolev inequalities and interpolation estimates, is used to obtain explicit convergence rates to the equilibrium solution.

The close connection of the presented model and the Becker-Döring model is outlined by a family of discrete Fokker-Planck type equations interpolating between both of them. This family of models possesses a gradient flow structure, emphasizing their commonality.

Citation: Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079
##### References:
 [1] L. Ambrosio and G. Buttazzo, Weak lower semicontinuous envelope of functionals defined on a space of measures, Ann. Di Mat. Pura Ed Appl., (4) 150 (1988), 311–339. doi: 10.1007/BF01761473.  Google Scholar [2] C. Ané, S. Blachère, D. Chafai, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur Les Inégalités de Sobolev Logarithmiques, Panoramas et Synthèses, Société Mathématique de France, 2000.  Google Scholar [3] J. M. Ball, J. Carr and O. Penrose, The Becker Döring cluster equations: Basic properties and asymptotic behavior of solutions, Comm. Math. Phys., 104 (1986), 657-692.  doi: 10.1007/BF01211070.  Google Scholar [4] F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line, Stud. Math., 159 (2003), 481-497.  doi: 10.4064/sm159-3-9.  Google Scholar [5] F. Barthe and C. Roberto, Modified Logarithmic Sobolev Inequalities on $\mathbb{R}$, Potential Anal., 29 (2008), 167-193.  doi: 10.1007/s11118-008-9093-5.  Google Scholar [6] R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Der Phys., 24 (1935), 719-752.  doi: 10.1002/andp.19354160806.  Google Scholar [7] P. Billingsley, Convergence of Probability Measures, Wiley, 1968, New York-London.  Google Scholar [8] S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities, J. Funct. Anal., 163 (1999), 1-28.  doi: 10.1006/jfan.1998.3326.  Google Scholar [9] V. I. Bogachev, Measure Theory, Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar [10] V. Bögelein, F. Duzaar and G. Mingione, The boundary regularity of non-linear parabolic systems Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 201–255. doi: 10.1016/j.anihpc.2009.09.003.  Google Scholar [11] F. Bolley and C. Villani, Weighted Csiszar-Kullback-Pinsker inequalities and applications to transportation inequalities, Fac. Des Sci. Toulouse, 14 (2005), 331-352.  doi: 10.5802/afst.1095.  Google Scholar [12] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.  Google Scholar [13] J. A. Cañizo, A. Einav and B. Lods, Trend to equilibrium for the Becker-Döring equations: An analogue of Cercignani's conjecture, Anal. PDE., 10 (2017), 1663-1708.  doi: 10.2140/apde.2017.10.1663.  Google Scholar [14] J. A. Cañizo, A. Einav and B. Lods, Uniform moment propagation for the Becker-Döring equation, preprint, arXiv: 1706.03524. Google Scholar [15] J. Cañizo and B. Lods, Exponential convergence to equilibrium for subcritical solutions of the Becker-Döring equations, Journ. Diff. Eqns., 255 (2013), 905-950.  doi: 10.1016/j.jde.2013.04.031.  Google Scholar [16] J.-F. Collet, Some modelling issues in the theory of fragmentation-coagulation systems, Commun. Math. Sci., 2 (2004), 35-54.  doi: 10.4310/CMS.2004.v2.n5.a3.  Google Scholar [17] J.-F. Collet, T. Goudon, F. Poupaud and A. Vasseur, The Becker-Döring system and its Lifshitz-Slyozov limit, SIAM J. Appl. Math., 62 (2002), 1488-1500.  doi: 10.1137/S0036139900378852.  Google Scholar [18] J.-F. Collet and T. Goudon, On solutions of the Lifshitz-Slyozov model, Nonlinearity, 13 (2000), 1239-1262.  doi: 10.1088/0951-7715/13/4/314.  Google Scholar [19] J.-F. Collet and S. Hariz, A modified version of the Lifshitz-Slyozov model, Appl. Math. Lett., 12 (1999), 81-85.  doi: 10.1016/S0893-9659(2.40)00138-4.  Google Scholar [20] J. G. Conlon, On a diffusive version of the Lifschitz–Slyozov–Wagner equation, J. Nonlinear Sci., 20 (2010), 463-521.  doi: 10.1007/s00332-010-9065-y.  Google Scholar [21] J. Conlon and M. Guha, Stochastic Variational formulas for linear diffusion equations, Rev. Mat. Iberoam., 30 (2014), 581-666.  doi: 10.4171/RMI/794.  Google Scholar [22] D. DeBlassie and R. Smits, The influence of a power law drift on the exit time of Brownian motion from a half-line, Stochastic Process. Appl., 117 (2007), 629-654.  doi: 10.1016/j.spa.2006.09.009.  Google Scholar [23] S. Eberle, B. Niethammer and A. Schlichting, Gradient flow formulation and longtime behaviour of a constrained Fokker–Planck equation, Nonlinear Anal., 158 (2017), 142-167.  doi: 10.1016/j.na.2017.04.009.  Google Scholar [24] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional Conference Series in Mathematics, Vol 74, Amer. Math. Soc., 1990. doi: 10.1090/cbms/074.  Google Scholar [25] L. C. Evans, Partial Differential Equations, Amer. Math. Soc. Graduate Study in Mathematics, 19, 1998, AMS Providence.  Google Scholar [26] A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl., 94 (2010), 107-130.  doi: 10.1016/j.matpur.2009.11.005.  Google Scholar [27] M. Friedlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-25847-3.  Google Scholar [28] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., 1964,347 pp.  Google Scholar [29] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition, Walter de Gruyter, Berlin, 2011.  Google Scholar [30] P.-E. Jabin and B. Niethammer, On the rate of convergence to equilibrium in the Becker–Döring equations, J. Differ. Equ., 191 (2003), 518–543. doi: 10.1016/S0022-0396(03)00021-4.  Google Scholar [31] P. Laurenccot and S. Mischler, From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations, J. Stat. Phys., 106 (2002), 957-991.  doi: 10.1023/A:1014081619064.  Google Scholar [32] I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids., 19 (1961), 35-50.  doi: 10.1016/0022-3697(61)90054-3.  Google Scholar [33] D. Matthes, A. Jüngel and G. Toscani, Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596.  doi: 10.1007/s00205-010-0331-9.  Google Scholar [34] J. Morales, A new family of transportation costs with applications to reaction-diffusion and parabolic equations with boundary conditions, J. Math. Pures Appl., (9) 112 (2018), 41–88. doi: 10.1016/j.matpur.2017.12.001.  Google Scholar [35] B. Muckenhoupt, Hardy's inequality with weights, Stud. Math., 44 (1972), 31-38.  doi: 10.4064/sm-44-1-31-38.  Google Scholar [36] B. Niethammer, On the evolution of large clusters in the Becker-Döring model, J. Nonlinear Sci., 13 (2003), 115-155.  doi: 10.1007/s00332-002-0535-8.  Google Scholar [37] B. Niethammer and R. L. Pego, On the initial value problem in the Lifschitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485.  doi: 10.1137/S0036141098338211.  Google Scholar [38] B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana Univ. Math. J., 54 (2005), 499-530.  doi: 10.1512/iumj.2005.54.2598.  Google Scholar [39] O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening, J. Stat. Phys., 89 (1997), 305-320.  doi: 10.1007/BF02770767.  Google Scholar [40] Y. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen, 1 (1956), 177-238.  doi: 10.1137/1101016.  Google Scholar [41] M. Protter and H. Weinberger, Maximum principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar [42] M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅰ. Functional Analysis, Academic Press, New York-London, 1972.  doi: 10.1088/0031-9112/23/12/045.  Google Scholar [43] O. S. Rothaus, Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal., 64 (1985), 296-313.  doi: 10.1016/0022-1236(2.32)90079-5.  Google Scholar [44] A. Schlichting, Macroscopic Limit of the Becker-Döring Equation Via Gradient Flows, ESAIM: COCV, Forthcoming article, 2018. doi: 10.1051/cocv/2018011.  Google Scholar [45] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984. doi: 10.1137/1.9781611970241.  Google Scholar [46] J. J. L. Velázquez, The Becker-Döring equations and the Lifschitz-Slyozov theory of coarsening, J. Stat. Phys., 92 (1998), 195-236.  doi: 10.1023/A:1023099720145.  Google Scholar [47] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, Amer. Math. Soc., Providence R.I., 2003. doi: 10.1090/gsm/058.  Google Scholar [48] C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektrochem., 65 (1961), 581-591.   Google Scholar [49] J. A. Walker, Dynamical Systems and Evolution Equations: Theory and Applications., Plenum Press, New York-London, 1980.  doi: 10.1007/978-1-4684-1036-5.  Google Scholar

show all references

##### References:
 [1] L. Ambrosio and G. Buttazzo, Weak lower semicontinuous envelope of functionals defined on a space of measures, Ann. Di Mat. Pura Ed Appl., (4) 150 (1988), 311–339. doi: 10.1007/BF01761473.  Google Scholar [2] C. Ané, S. Blachère, D. Chafai, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur Les Inégalités de Sobolev Logarithmiques, Panoramas et Synthèses, Société Mathématique de France, 2000.  Google Scholar [3] J. M. Ball, J. Carr and O. Penrose, The Becker Döring cluster equations: Basic properties and asymptotic behavior of solutions, Comm. Math. Phys., 104 (1986), 657-692.  doi: 10.1007/BF01211070.  Google Scholar [4] F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line, Stud. Math., 159 (2003), 481-497.  doi: 10.4064/sm159-3-9.  Google Scholar [5] F. Barthe and C. Roberto, Modified Logarithmic Sobolev Inequalities on $\mathbb{R}$, Potential Anal., 29 (2008), 167-193.  doi: 10.1007/s11118-008-9093-5.  Google Scholar [6] R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Der Phys., 24 (1935), 719-752.  doi: 10.1002/andp.19354160806.  Google Scholar [7] P. Billingsley, Convergence of Probability Measures, Wiley, 1968, New York-London.  Google Scholar [8] S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities, J. Funct. Anal., 163 (1999), 1-28.  doi: 10.1006/jfan.1998.3326.  Google Scholar [9] V. I. Bogachev, Measure Theory, Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar [10] V. Bögelein, F. Duzaar and G. Mingione, The boundary regularity of non-linear parabolic systems Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 201–255. doi: 10.1016/j.anihpc.2009.09.003.  Google Scholar [11] F. Bolley and C. Villani, Weighted Csiszar-Kullback-Pinsker inequalities and applications to transportation inequalities, Fac. Des Sci. Toulouse, 14 (2005), 331-352.  doi: 10.5802/afst.1095.  Google Scholar [12] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.  Google Scholar [13] J. A. Cañizo, A. Einav and B. Lods, Trend to equilibrium for the Becker-Döring equations: An analogue of Cercignani's conjecture, Anal. PDE., 10 (2017), 1663-1708.  doi: 10.2140/apde.2017.10.1663.  Google Scholar [14] J. A. Cañizo, A. Einav and B. Lods, Uniform moment propagation for the Becker-Döring equation, preprint, arXiv: 1706.03524. Google Scholar [15] J. Cañizo and B. Lods, Exponential convergence to equilibrium for subcritical solutions of the Becker-Döring equations, Journ. Diff. Eqns., 255 (2013), 905-950.  doi: 10.1016/j.jde.2013.04.031.  Google Scholar [16] J.-F. Collet, Some modelling issues in the theory of fragmentation-coagulation systems, Commun. Math. Sci., 2 (2004), 35-54.  doi: 10.4310/CMS.2004.v2.n5.a3.  Google Scholar [17] J.-F. Collet, T. Goudon, F. Poupaud and A. Vasseur, The Becker-Döring system and its Lifshitz-Slyozov limit, SIAM J. Appl. Math., 62 (2002), 1488-1500.  doi: 10.1137/S0036139900378852.  Google Scholar [18] J.-F. Collet and T. Goudon, On solutions of the Lifshitz-Slyozov model, Nonlinearity, 13 (2000), 1239-1262.  doi: 10.1088/0951-7715/13/4/314.  Google Scholar [19] J.-F. Collet and S. Hariz, A modified version of the Lifshitz-Slyozov model, Appl. Math. Lett., 12 (1999), 81-85.  doi: 10.1016/S0893-9659(2.40)00138-4.  Google Scholar [20] J. G. Conlon, On a diffusive version of the Lifschitz–Slyozov–Wagner equation, J. Nonlinear Sci., 20 (2010), 463-521.  doi: 10.1007/s00332-010-9065-y.  Google Scholar [21] J. Conlon and M. Guha, Stochastic Variational formulas for linear diffusion equations, Rev. Mat. Iberoam., 30 (2014), 581-666.  doi: 10.4171/RMI/794.  Google Scholar [22] D. DeBlassie and R. Smits, The influence of a power law drift on the exit time of Brownian motion from a half-line, Stochastic Process. Appl., 117 (2007), 629-654.  doi: 10.1016/j.spa.2006.09.009.  Google Scholar [23] S. Eberle, B. Niethammer and A. Schlichting, Gradient flow formulation and longtime behaviour of a constrained Fokker–Planck equation, Nonlinear Anal., 158 (2017), 142-167.  doi: 10.1016/j.na.2017.04.009.  Google Scholar [24] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional Conference Series in Mathematics, Vol 74, Amer. Math. Soc., 1990. doi: 10.1090/cbms/074.  Google Scholar [25] L. C. Evans, Partial Differential Equations, Amer. Math. Soc. Graduate Study in Mathematics, 19, 1998, AMS Providence.  Google Scholar [26] A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl., 94 (2010), 107-130.  doi: 10.1016/j.matpur.2009.11.005.  Google Scholar [27] M. Friedlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-25847-3.  Google Scholar [28] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., 1964,347 pp.  Google Scholar [29] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition, Walter de Gruyter, Berlin, 2011.  Google Scholar [30] P.-E. Jabin and B. Niethammer, On the rate of convergence to equilibrium in the Becker–Döring equations, J. Differ. Equ., 191 (2003), 518–543. doi: 10.1016/S0022-0396(03)00021-4.  Google Scholar [31] P. Laurenccot and S. Mischler, From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations, J. Stat. Phys., 106 (2002), 957-991.  doi: 10.1023/A:1014081619064.  Google Scholar [32] I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids., 19 (1961), 35-50.  doi: 10.1016/0022-3697(61)90054-3.  Google Scholar [33] D. Matthes, A. Jüngel and G. Toscani, Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596.  doi: 10.1007/s00205-010-0331-9.  Google Scholar [34] J. Morales, A new family of transportation costs with applications to reaction-diffusion and parabolic equations with boundary conditions, J. Math. Pures Appl., (9) 112 (2018), 41–88. doi: 10.1016/j.matpur.2017.12.001.  Google Scholar [35] B. Muckenhoupt, Hardy's inequality with weights, Stud. Math., 44 (1972), 31-38.  doi: 10.4064/sm-44-1-31-38.  Google Scholar [36] B. Niethammer, On the evolution of large clusters in the Becker-Döring model, J. Nonlinear Sci., 13 (2003), 115-155.  doi: 10.1007/s00332-002-0535-8.  Google Scholar [37] B. Niethammer and R. L. Pego, On the initial value problem in the Lifschitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485.  doi: 10.1137/S0036141098338211.  Google Scholar [38] B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana Univ. Math. J., 54 (2005), 499-530.  doi: 10.1512/iumj.2005.54.2598.  Google Scholar [39] O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening, J. Stat. Phys., 89 (1997), 305-320.  doi: 10.1007/BF02770767.  Google Scholar [40] Y. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen, 1 (1956), 177-238.  doi: 10.1137/1101016.  Google Scholar [41] M. Protter and H. Weinberger, Maximum principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar [42] M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅰ. Functional Analysis, Academic Press, New York-London, 1972.  doi: 10.1088/0031-9112/23/12/045.  Google Scholar [43] O. S. Rothaus, Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal., 64 (1985), 296-313.  doi: 10.1016/0022-1236(2.32)90079-5.  Google Scholar [44] A. Schlichting, Macroscopic Limit of the Becker-Döring Equation Via Gradient Flows, ESAIM: COCV, Forthcoming article, 2018. doi: 10.1051/cocv/2018011.  Google Scholar [45] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984. doi: 10.1137/1.9781611970241.  Google Scholar [46] J. J. L. Velázquez, The Becker-Döring equations and the Lifschitz-Slyozov theory of coarsening, J. Stat. Phys., 92 (1998), 195-236.  doi: 10.1023/A:1023099720145.  Google Scholar [47] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, Amer. Math. Soc., Providence R.I., 2003. doi: 10.1090/gsm/058.  Google Scholar [48] C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektrochem., 65 (1961), 581-591.   Google Scholar [49] J. A. Walker, Dynamical Systems and Evolution Equations: Theory and Applications., Plenum Press, New York-London, 1980.  doi: 10.1007/978-1-4684-1036-5.  Google Scholar
 [1] Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120 [2] Hamza Khalfi, Amal Aarab, Nour Eddine Alaa. Energetics and coarsening analysis of a simplified non-linear surface growth model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021014 [3] Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028 [4] Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215 [5] Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 [6] Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036 [7] Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 [8] Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016 [9] Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 [10] José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 [11] Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239 [12] Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic & Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011 [13] Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1 [14] Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032 [15] Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037 [16] Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845 [17] Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653 [18] Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 [19] Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008 [20] Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

2020 Impact Factor: 1.392