# American Institute of Mathematical Sciences

July  2019, 39(7): 3897-3921. doi: 10.3934/dcds.2019157

## The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations

 1 Institute of Mathematics for Industry, Kyushu University / JST PRESTO, Fukuoka, 819-0395, Japan 2 Department of Mathematics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA

Received  April 2018 Published  April 2019

In our previous work [3], we initiated a mathematical investigation of the onset of synchronization in the Kuramoto model (KM) of coupled phase oscillators on convergent graph sequences. There, we derived and rigorously justified the mean field limit for the KM on graphs. Using linear stability analysis, we identified the critical values of the coupling strength, at which the incoherent state looses stability, thus, determining the onset of synchronization in this model.

In the present paper, we study the corresponding bifurcations. Specifically, we show that similar to the original KM with all-to-all coupling, the onset of synchronization in the KM on graphs is realized via a pitchfork bifurcation. The formula for the stable branch of the bifurcating equilibria involves the principal eigenvalue and the corresponding eigenfunctions of the kernel operator defined by the limit of the graph sequence used in the model. This establishes an explicit link between the network structure and the onset of synchronization in the KM on graphs. The results of this work are illustrated with the bifurcation analysis of the KM on Erdős-Rényi, small-world, as well as certain weighted graphs on a circle.

Citation: Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157
##### References:
 [1] H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35 (2015), 762-834.  doi: 10.1017/etds.2013.68.  Google Scholar [2] ____, A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions, Adv. Math. 273 (2015), 324-379. doi: 10.1016/j.aim.2015.01.001.  Google Scholar [3] H. Chiba and G. S. Medvedev, The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and the transition point formulas, Discrete and Continuous Dynamical Systems - A, 39 (2019), 131-155.  doi: 10.3934/dcds.2019006.  Google Scholar [4] H. Chiba, G. S. Medvedev and M. Mizhura, Bifurcations in the Kuramoto model on graphs, Chaos, 28 (2018), 073109, 10pp. doi: 10.1063/1.5039609.  Google Scholar [5] H. Chiba and I. Nishikawa, Center manifold reduction for large populations of globally coupled phase oscillators, Chaos, 21 (2011), 043103, 10pp. doi: 10.1063/1.3647317.  Google Scholar [6] H. Dietert, Stability of partially locked states in the Kuramoto model through Landau damping with Sobolev regularity, arXiv e-prints, 2017. Google Scholar [7] ____, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., (9) 105 (2016), 451–489. doi: 10.1016/j.matpur.2015.11.001.  Google Scholar [8] R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511755347.  Google Scholar [9] B. Fernandez, D. Gérard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar [10] F. D. Gakhov, Boundary Value Problems, Dover Publications, Inc., New York, 1990, Translated from the Russian, Reprint of the 1966 translation.  Google Scholar [11] I. M. Gel$'$fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4: Applications of harmonic analysis. Translated by Amiel Feinstein Academic Press, New York - London, 1964.   Google Scholar [12] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan, 19 (1967), 366-383.  doi: 10.2969/jmsj/01930366.  Google Scholar [13] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), 420–422. Lecture Notes in Phys., 39. Springer, Berlin, 1975.  Google Scholar [14] L. Lovász, Large Networks and Graph Limits, AMS, Providence, RI, 2012. Google Scholar [15] L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), 933-957.  doi: 10.1016/j.jctb.2006.05.002.  Google Scholar [16] G. S. Medvedev, The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., 46 (2014), 2743-2766.  doi: 10.1137/130943741.  Google Scholar [17] ____, The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal., 212 (2014), 781-803. doi: 10.1007/s00205-013-0706-9.  Google Scholar [18] ____, Small-world networks of Kuramoto oscillators, Phys. D, 266 (2014), 13-22. doi: 10.1016/j.physd.2013.09.008.  Google Scholar [19] G.S. Medvedev and X. Tang, Stability of twisted states in the Kuramoto model on Cayley and random graphs, Journal of Nonlinear Science, 25 (2015), 1169-1208.  doi: 10.1007/s00332-015-9252-y.  Google Scholar [20] C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar [21] S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar [22] S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.  doi: 10.1007/BF01029202.  Google Scholar [23] S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett., 68 (1992), 2730-2733.  doi: 10.1103/PhysRevLett.68.2730.  Google Scholar [24] D. A. Wiley, S. H. Strogatz and M. Girvan, The size of the sync basin, Chaos, 16 (2006), 015103, 8pp. doi: 10.1063/1.2165594.  Google Scholar

show all references

##### References:
 [1] H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35 (2015), 762-834.  doi: 10.1017/etds.2013.68.  Google Scholar [2] ____, A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions, Adv. Math. 273 (2015), 324-379. doi: 10.1016/j.aim.2015.01.001.  Google Scholar [3] H. Chiba and G. S. Medvedev, The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and the transition point formulas, Discrete and Continuous Dynamical Systems - A, 39 (2019), 131-155.  doi: 10.3934/dcds.2019006.  Google Scholar [4] H. Chiba, G. S. Medvedev and M. Mizhura, Bifurcations in the Kuramoto model on graphs, Chaos, 28 (2018), 073109, 10pp. doi: 10.1063/1.5039609.  Google Scholar [5] H. Chiba and I. Nishikawa, Center manifold reduction for large populations of globally coupled phase oscillators, Chaos, 21 (2011), 043103, 10pp. doi: 10.1063/1.3647317.  Google Scholar [6] H. Dietert, Stability of partially locked states in the Kuramoto model through Landau damping with Sobolev regularity, arXiv e-prints, 2017. Google Scholar [7] ____, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., (9) 105 (2016), 451–489. doi: 10.1016/j.matpur.2015.11.001.  Google Scholar [8] R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511755347.  Google Scholar [9] B. Fernandez, D. Gérard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar [10] F. D. Gakhov, Boundary Value Problems, Dover Publications, Inc., New York, 1990, Translated from the Russian, Reprint of the 1966 translation.  Google Scholar [11] I. M. Gel$'$fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4: Applications of harmonic analysis. Translated by Amiel Feinstein Academic Press, New York - London, 1964.   Google Scholar [12] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan, 19 (1967), 366-383.  doi: 10.2969/jmsj/01930366.  Google Scholar [13] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), 420–422. Lecture Notes in Phys., 39. Springer, Berlin, 1975.  Google Scholar [14] L. Lovász, Large Networks and Graph Limits, AMS, Providence, RI, 2012. Google Scholar [15] L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), 933-957.  doi: 10.1016/j.jctb.2006.05.002.  Google Scholar [16] G. S. Medvedev, The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., 46 (2014), 2743-2766.  doi: 10.1137/130943741.  Google Scholar [17] ____, The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal., 212 (2014), 781-803. doi: 10.1007/s00205-013-0706-9.  Google Scholar [18] ____, Small-world networks of Kuramoto oscillators, Phys. D, 266 (2014), 13-22. doi: 10.1016/j.physd.2013.09.008.  Google Scholar [19] G.S. Medvedev and X. Tang, Stability of twisted states in the Kuramoto model on Cayley and random graphs, Journal of Nonlinear Science, 25 (2015), 1169-1208.  doi: 10.1007/s00332-015-9252-y.  Google Scholar [20] C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar [21] S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar [22] S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.  doi: 10.1007/BF01029202.  Google Scholar [23] S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett., 68 (1992), 2730-2733.  doi: 10.1103/PhysRevLett.68.2730.  Google Scholar [24] D. A. Wiley, S. H. Strogatz and M. Girvan, The size of the sync basin, Chaos, 16 (2006), 015103, 8pp. doi: 10.1063/1.2165594.  Google Scholar
Deformation of the integral path for the Laplace inversion formula
Formation of partially phase-locked solutions near a bifurcation with two-dimensional null space. The KM with intrinsic frequencies from the standard normal distribution, graphon (6.21), and random initial condition was for suffiently large time to reach a stationary regime. The values of $K$ are a) $3.5$, b) $4$, and c) $5$. The asymptotic state in (a) combines oscillators grouped around a $1$-twisted state with those distributed randomly around $\mathbb{S}$. For increasing values of $K$, the noisy twisted states become more distinct (b, c)
 [1] Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149 [2] Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086 [3] Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303 [4] Barton E. Lee. Consensus and voting on large graphs: An application of graph limit theory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1719-1744. doi: 10.3934/dcds.2018071 [5] Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 [6] Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 [7] Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 [8] Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004 [9] Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381 [10] Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 [11] Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533 [12] Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385 [13] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013 [14] Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086 [15] Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89 [16] Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313 [17] Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583 [18] Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 [19] Renhai Wang, Bixiang Wang. Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2461-2493. doi: 10.3934/dcdsb.2020019 [20] Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

2018 Impact Factor: 1.143