July  2019, 39(7): 4073-4089. doi: 10.3934/dcds.2019164

On the oscillation behavior of solutions to the one-dimensional heat equation

1. 

Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

2. 

Department of Financial Engineering, Providence University, Taichung 43301, Taiwan

Received  September 2018 Published  April 2019

We study the oscillation behavior of solutions to the one-dimensional heat equation and give some interesting examples. We also demonstrate a simple ODE method to find explicit solutions of the heat equation with certain particular initial conditions.

Citation: Dong-Ho Tsai, Chia-Hsing Nien. On the oscillation behavior of solutions to the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4073-4089. doi: 10.3934/dcds.2019164
References:
[1]

P. Collet and J. -P. Eckmann, Space-time behavior in problems of hydrodynamic type: A case study, Nonlinearity, 5 (1992), 1265-1302. doi: 10.1088/0951-7715/5/6/004. Google Scholar

[2]

S. D. Eidel'man, Parabolic System, North-Holland, Amsterdam, 1969.Google Scholar

[3]

S. Kamin, On stabilization of solutions of the Cauchy problem for parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 76/77 (1976), 43-53. doi: 10.1017/S0308210500019478. Google Scholar

[4]

M. Nara and M. Taniguchi, The condition on the stability of stationary lines in a curvature flow in the whole plane, J. Diff. Eq., 237 (2007), 61-76. doi: 10.1016/j.jde.2007.02.012. Google Scholar

[5]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, v. 82, SIAM, 2011. doi: 10.1137/1.9781611971972. Google Scholar

[6]

V. D. Repnikov and S. D. Eidel'man, A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Math. USSR Sb., 2 (1967), 135-139. doi: 10.1070/SM1967v002n01ABEH002328. Google Scholar

show all references

References:
[1]

P. Collet and J. -P. Eckmann, Space-time behavior in problems of hydrodynamic type: A case study, Nonlinearity, 5 (1992), 1265-1302. doi: 10.1088/0951-7715/5/6/004. Google Scholar

[2]

S. D. Eidel'man, Parabolic System, North-Holland, Amsterdam, 1969.Google Scholar

[3]

S. Kamin, On stabilization of solutions of the Cauchy problem for parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 76/77 (1976), 43-53. doi: 10.1017/S0308210500019478. Google Scholar

[4]

M. Nara and M. Taniguchi, The condition on the stability of stationary lines in a curvature flow in the whole plane, J. Diff. Eq., 237 (2007), 61-76. doi: 10.1016/j.jde.2007.02.012. Google Scholar

[5]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, v. 82, SIAM, 2011. doi: 10.1137/1.9781611971972. Google Scholar

[6]

V. D. Repnikov and S. D. Eidel'man, A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Math. USSR Sb., 2 (1967), 135-139. doi: 10.1070/SM1967v002n01ABEH002328. Google Scholar

[1]

Fredi Tröltzsch, Daniel Wachsmuth. On the switching behavior of sparse optimal controls for the one-dimensional heat equation. Mathematical Control & Related Fields, 2018, 8 (1) : 135-153. doi: 10.3934/mcrf.2018006

[2]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[3]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[4]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[5]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[6]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[7]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

[8]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[9]

Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345

[10]

Kai Yan, Zhaoyang Yin. On the initial value problem for higher dimensional Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1327-1358. doi: 10.3934/dcds.2015.35.1327

[11]

Jie Jiang, Boling Guo. Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 167-190. doi: 10.3934/dcds.2012.32.167

[12]

Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences & Engineering, 2012, 9 (2) : 215-239. doi: 10.3934/mbe.2012.9.215

[13]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[14]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[15]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[16]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[17]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[18]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[19]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[20]

Oleg V. Kaptsov, Alexey V. Schmidt. Reduction of three-dimensional model of the far turbulent wake to one-dimensional problem. Conference Publications, 2011, 2011 (Special) : 794-802. doi: 10.3934/proc.2011.2011.794

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (64)
  • HTML views (103)
  • Cited by (0)

Other articles
by authors

[Back to Top]