July 2019, 39(7): 4091-4126. doi: 10.3934/dcds.2019165

Random dynamics of fractional nonclassical diffusion equations driven by colored noise

1. 

School of Mathematics and statistics, Southwest University, Chongqing 400715, China

2. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

* Corresponding author: liyr@swu.edu.cn (Yangrong Li)

Received  October 2018 Revised  January 2019 Published  April 2019

The random dynamics in $ H^s(\mathbb{R}^n) $ with $ s\in (0,1) $ is investigated for the fractional nonclassical diffusion equations driven by colored noise. Both existence and uniqueness of pullback random attractors are established for the equations with a wide class of nonlinear diffusion terms. In the case of additive noise, the upper semi-continuity of these attractors is proved as the correlation time of the colored noise approaches zero. The methods of uniform tail-estimate and spectral decomposition are employed to obtain the pullback asymptotic compactness of the solutions in order to overcome the non-compactness of the Sobolev embedding on an unbounded domain.

Citation: Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643.

[2]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mechanica, 37 (1980), 265-296. doi: 10.1007/BF01202949.

[3]

E. C. Aifantis adient nanomechanics, applications to deformation, fracture, and diffusion in nanopolycrystals, Metallurgical and Materials Transactions A, 42 (2011), 2985-2998.

[4]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412. doi: 10.1016/j.na.2010.03.031.

[5]

C. T. Anh and T. Q. Bao, Dynamics of non-autonomous nonclassical diffusion equations on $\mathbb{R}^n$, Commun. Pure Appl. Anal., 11 (2012), 1231-1252. doi: 10.3934/cpaa.2012.11.1231.

[6]

V. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova and L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments, Springer Series in Synergetics. Springer-Verlag, Berlin, 2002.

[7]

L. Bai and F. Zhang, Existence of random attractors for 2D-stochastic nonclassical diffusion equations on unbounded domains, Results Math., 69 (2016), 129-160. doi: 10.1007/s00025-015-0505-8.

[8]

P. W. BatesK. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017.

[9]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50. doi: 10.1016/j.physd.2014.08.004.

[10]

P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phys., 54 (2013), 081505, 26 pp. doi: 10.1063/1.4817597.

[11]

L. Caffarelli, J. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., (JEMS) 12 (2010), 1151-1179. doi: 10.4171/JEMS/226.

[12]

T. Caraballo and J. A. Langa, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Disrete Contin. Dyn. Syst., 6 (2000), 875-892. doi: 10.3934/dcds.2000.6.875.

[13]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439.

[14]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684. doi: 10.1016/j.na.2011.02.047.

[15]

H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 265 (2018), 702-718. doi: 10.1016/j.jde.2018.03.011.

[16]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differ. Equ., 9 (1997), 307-341. doi: 10.1007/BF02219225.

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[18]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083.

[19]

H. Gao and C. Sun, Random dynamics of the 3D stochastic Navier-Stokes-Voight equations, Nonlinear Anal. RWA, 13 (2012), 1197-1205. doi: 10.1016/j.nonrwa.2011.09.013.

[20]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differ. Equ., 23 (2011), 671-681. doi: 10.1007/s10884-011-9222-5.

[21]

M. J. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388. doi: 10.1142/S0219493711003358.

[22]

W. Gerstner, W. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, Cambridge, 2014.

[23]

B. GessW. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253. doi: 10.1016/j.jde.2011.02.013.

[24]

B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dynam. Differ. Equ., 25 (2013), 121-157. doi: 10.1007/s10884-013-9294-5.

[25]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559. doi: 10.1016/j.jde.2013.04.023.

[26]

A. Gu, B. Guo and B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, (2018), submitted.

[27]

A. GuD. LiB. Wanga and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137. doi: 10.1016/j.jde.2018.02.011.

[28]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.

[29]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214. doi: 10.1002/cpa.20253.

[30]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. RWA, 14 (2013), 1308-1322. doi: 10.1016/j.nonrwa.2012.09.019.

[31]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753.

[32]

K. Kuttler and E. C. Aifantis, Quasilinear evolution equations in nonclassical diffusion, SIAM J. Math. Anal., 19 (1998), 110-120. doi: 10.1137/0519008.

[33]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602. doi: 10.1016/j.jde.2016.10.024.

[34]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.

[35]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021.

[36]

Y. Li and R. Wang, Random attractors for 3D Benjamin-Bona-Mahony equations derived by a Laplace-multiplier noise, Stoch. Dyn., 18 (2018), 1850004, 26pp. doi: 10.1142/S0219493718500041.

[37]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.

[38]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differ. Equ., (2017), 1-31. doi: 10.1007/s10884-017-9626-y.

[39]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301. doi: 10.1016/j.jde.2015.06.028.

[40]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $\mathbb{R}^n$, Nonlinear Anal., 128 (2015), 176-198. doi: 10.1016/j.na.2015.06.033.

[41]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.

[42]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo-Nirenberg and Sobolev inequalities, Expo. Math., 36 (2018), 32-77. doi: 10.1016/j.exmath.2017.08.007.

[43]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[44]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855. doi: 10.1017/S0308210512001783.

[45]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[46]

G. Uhlenbeck and L. Ornstein, On the theory of Brownian motion, Phys. Rev., 36 (1930), 823. doi: 10.1103/PhysRev.36.823.

[47]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537. doi: 10.1016/j.jde.2008.10.012.

[48]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^{3}$, Tran. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5.

[49]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.

[50]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82. doi: 10.1016/j.na.2017.04.006.

[51]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.

[52]

L. WangY. Wang and Y. Qin, Upper semi-continuity of attractors for nonclassical diffusion equations in $H(\mathbb{R}^3)$, Appl. Math. Comput., 240 (2014), 51-61. doi: 10.1016/j.amc.2014.04.092.

[53]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. RWA, 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008.

[54]

Y. WangZ. Zhu and P. Li, Regularity of pullback attractors for nonautonomous nonclassical diffusion equations, J. Math. Anal. Appl., 459 (2018), 16-31. doi: 10.1016/j.jmaa.2017.10.075.

[55]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2018), 378-424. doi: 10.1016/j.jde.2017.09.006.

[56]

Y. XieQ. Li and K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal. RWA, 31 (2016), 23-37. doi: 10.1016/j.nonrwa.2016.01.004.

[57]

M. Yang and P. E. Kloeden, Random attractors for stochastic semi-linear degenerate parabolic equations, Nonlinear Anal. RWA, 12 (2011), 2811-2821. doi: 10.1016/j.nonrwa.2011.04.007.

[58]

M. YangJ. Duan and P. E. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. RWA, 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032.

[59]

W. Zhao and S. Song, Dynamics of stochastic nonclassical diffusion equations on unbounded domains, Electronic J. Differential Equations, 282 (2015), 1-22.

[60]

F. Zhang and W. Han, Pullback attractors for nonclassical diffusion delay equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms, Electronic J. Differential Equations, 139 (2016), 1-28.

[61]

F. Zhang and Y. Liu, Pullback attractors in $H^1(\mathbb{R}^n)$ for non-autonomous nonclassical diffusion equations, Dynamical Systems, 29 (2014), 106-118. doi: 10.1080/14689367.2013.854317.

[62]

S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differential Equations, 263 (2017), 2247-2279. doi: 10.1016/j.jde.2017.03.044.

[63]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2017), 2887-2914.

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643.

[2]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mechanica, 37 (1980), 265-296. doi: 10.1007/BF01202949.

[3]

E. C. Aifantis adient nanomechanics, applications to deformation, fracture, and diffusion in nanopolycrystals, Metallurgical and Materials Transactions A, 42 (2011), 2985-2998.

[4]

C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412. doi: 10.1016/j.na.2010.03.031.

[5]

C. T. Anh and T. Q. Bao, Dynamics of non-autonomous nonclassical diffusion equations on $\mathbb{R}^n$, Commun. Pure Appl. Anal., 11 (2012), 1231-1252. doi: 10.3934/cpaa.2012.11.1231.

[6]

V. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova and L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments, Springer Series in Synergetics. Springer-Verlag, Berlin, 2002.

[7]

L. Bai and F. Zhang, Existence of random attractors for 2D-stochastic nonclassical diffusion equations on unbounded domains, Results Math., 69 (2016), 129-160. doi: 10.1007/s00025-015-0505-8.

[8]

P. W. BatesK. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017.

[9]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50. doi: 10.1016/j.physd.2014.08.004.

[10]

P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phys., 54 (2013), 081505, 26 pp. doi: 10.1063/1.4817597.

[11]

L. Caffarelli, J. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., (JEMS) 12 (2010), 1151-1179. doi: 10.4171/JEMS/226.

[12]

T. Caraballo and J. A. Langa, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Disrete Contin. Dyn. Syst., 6 (2000), 875-892. doi: 10.3934/dcds.2000.6.875.

[13]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439.

[14]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684. doi: 10.1016/j.na.2011.02.047.

[15]

H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 265 (2018), 702-718. doi: 10.1016/j.jde.2018.03.011.

[16]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differ. Equ., 9 (1997), 307-341. doi: 10.1007/BF02219225.

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[18]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083.

[19]

H. Gao and C. Sun, Random dynamics of the 3D stochastic Navier-Stokes-Voight equations, Nonlinear Anal. RWA, 13 (2012), 1197-1205. doi: 10.1016/j.nonrwa.2011.09.013.

[20]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differ. Equ., 23 (2011), 671-681. doi: 10.1007/s10884-011-9222-5.

[21]

M. J. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388. doi: 10.1142/S0219493711003358.

[22]

W. Gerstner, W. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, Cambridge, 2014.

[23]

B. GessW. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253. doi: 10.1016/j.jde.2011.02.013.

[24]

B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dynam. Differ. Equ., 25 (2013), 121-157. doi: 10.1007/s10884-013-9294-5.

[25]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559. doi: 10.1016/j.jde.2013.04.023.

[26]

A. Gu, B. Guo and B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, (2018), submitted.

[27]

A. GuD. LiB. Wanga and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137. doi: 10.1016/j.jde.2018.02.011.

[28]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.

[29]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214. doi: 10.1002/cpa.20253.

[30]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. RWA, 14 (2013), 1308-1322. doi: 10.1016/j.nonrwa.2012.09.019.

[31]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753.

[32]

K. Kuttler and E. C. Aifantis, Quasilinear evolution equations in nonclassical diffusion, SIAM J. Math. Anal., 19 (1998), 110-120. doi: 10.1137/0519008.

[33]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602. doi: 10.1016/j.jde.2016.10.024.

[34]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.

[35]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021.

[36]

Y. Li and R. Wang, Random attractors for 3D Benjamin-Bona-Mahony equations derived by a Laplace-multiplier noise, Stoch. Dyn., 18 (2018), 1850004, 26pp. doi: 10.1142/S0219493718500041.

[37]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.

[38]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differ. Equ., (2017), 1-31. doi: 10.1007/s10884-017-9626-y.

[39]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301. doi: 10.1016/j.jde.2015.06.028.

[40]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $\mathbb{R}^n$, Nonlinear Anal., 128 (2015), 176-198. doi: 10.1016/j.na.2015.06.033.

[41]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.

[42]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo-Nirenberg and Sobolev inequalities, Expo. Math., 36 (2018), 32-77. doi: 10.1016/j.exmath.2017.08.007.

[43]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[44]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855. doi: 10.1017/S0308210512001783.

[45]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[46]

G. Uhlenbeck and L. Ornstein, On the theory of Brownian motion, Phys. Rev., 36 (1930), 823. doi: 10.1103/PhysRev.36.823.

[47]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537. doi: 10.1016/j.jde.2008.10.012.

[48]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^{3}$, Tran. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5.

[49]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.

[50]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82. doi: 10.1016/j.na.2017.04.006.

[51]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.

[52]

L. WangY. Wang and Y. Qin, Upper semi-continuity of attractors for nonclassical diffusion equations in $H(\mathbb{R}^3)$, Appl. Math. Comput., 240 (2014), 51-61. doi: 10.1016/j.amc.2014.04.092.

[53]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. RWA, 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008.

[54]

Y. WangZ. Zhu and P. Li, Regularity of pullback attractors for nonautonomous nonclassical diffusion equations, J. Math. Anal. Appl., 459 (2018), 16-31. doi: 10.1016/j.jmaa.2017.10.075.

[55]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2018), 378-424. doi: 10.1016/j.jde.2017.09.006.

[56]

Y. XieQ. Li and K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal. RWA, 31 (2016), 23-37. doi: 10.1016/j.nonrwa.2016.01.004.

[57]

M. Yang and P. E. Kloeden, Random attractors for stochastic semi-linear degenerate parabolic equations, Nonlinear Anal. RWA, 12 (2011), 2811-2821. doi: 10.1016/j.nonrwa.2011.04.007.

[58]

M. YangJ. Duan and P. E. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. RWA, 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032.

[59]

W. Zhao and S. Song, Dynamics of stochastic nonclassical diffusion equations on unbounded domains, Electronic J. Differential Equations, 282 (2015), 1-22.

[60]

F. Zhang and W. Han, Pullback attractors for nonclassical diffusion delay equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms, Electronic J. Differential Equations, 139 (2016), 1-28.

[61]

F. Zhang and Y. Liu, Pullback attractors in $H^1(\mathbb{R}^n)$ for non-autonomous nonclassical diffusion equations, Dynamical Systems, 29 (2014), 106-118. doi: 10.1080/14689367.2013.854317.

[62]

S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differential Equations, 263 (2017), 2247-2279. doi: 10.1016/j.jde.2017.03.044.

[63]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise, Discrete Contin. Dyn. Syst., 36 (2017), 2887-2914.

[1]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[2]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[3]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[4]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[5]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[6]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[7]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[8]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[9]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[10]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[11]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[12]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[13]

Jun Shen, Kening Lu, Bixiang Wang. Convergence and center manifolds for differential equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4797-4840. doi: 10.3934/dcds.2019196

[14]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[15]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[16]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[17]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[18]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[19]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[20]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

2017 Impact Factor: 1.179

Article outline

[Back to Top]