• Previous Article
    Brake orbits on compact symmetric dynamically convex reversible hypersurfaces on $ \mathbb{R}^\text{2n} $
  • DCDS Home
  • This Issue
  • Next Article
    On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability
July 2019, 39(7): 4207-4224. doi: 10.3934/dcds.2019170

Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts

Institut für Mathematik, Ratzeburger Allee 160, D-23562 Lübeck, Germany

* Corresponding author: Tim Gutjahr

Received  October 2018 Revised  February 2019 Published  April 2019

In this paper, we show that, under some technical assumptions, the Kolmogorov-Sinai entropy and the permutation entropy are equal for one-dimensional maps if there exists a countable partition of the domain of definition into intervals such that the considered map is monotone on each of those intervals. This is a generalization of a result by Bandt, Pompe and G. Keller, who showed that the above holds true under the additional assumptions that the number of intervals on which the map is monotone is finite and that the map is continuous on each of those intervals.

Citation: Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170
References:
[1]

J. M. AmigóM. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D: Nonlinear Phenomena, 210 (2005), 77-95. doi: 10.1016/j.physd.2005.07.006.

[2]

C. BandtG. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity, 15 (2002), 1595-1602. doi: 10.1088/0951-7715/15/5/312.

[3]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. doi: 10.1103/PhysRevLett.88.174102.

[4]

K. Dajani, C. Kraaikamp and M. A. of America, Ergodic Theory of Numbers, no. Bd. 29 in Carus Mathematical Monographs, Mathematical Association of America, 2002. doi: 10.5948/UPO9781614440277.

[5]

M. Einsiedler and T. Ward, Ergodic Theory: With a View Towards Number Theory, Graduate Texts in Mathematics, 259. Springer-Verlag London, Ltd., London, 2011. doi: 10.1007/978-0-85729-021-2.

[6]

M. Einsiedler, E. Lindenstrauss and T. Ward, Entropy in ergodic theory and homogeneous dynamics, 2017., Available from: https://tbward0.wixsite.com/books/entropy.

[7]

S. Heinemann and O. Schmitt, Rokhlin's Lemma for Non-invertible Maps, Mathematica Gottingensis, Math. Inst., 2000.

[8]

G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts, Cambridge University Press, 1998. doi: 10.1017/CBO9781107359987.

[9]

K. KellerA. M. Unakafov and V. A. Unakafova, On the relation of ks entropy and permutation entropy, Physica D: Nonlinear Phenomena, 241 (2012), 1477-1481. doi: 10.1016/j.physd.2012.05.010.

[10]

A. Klenke, Probability Theory: A Comprehensive Course, Springer, 2008. doi: 10.1007/978-1-4471-5361-0.

[11]

X. LiG. Ouyang and D. A. Richards, Predictability analysis of absence seizures with permutation entropy, Epilepsy Research, 77 (2007), 70-74. doi: 10.1016/j.eplepsyres.2007.08.002.

[12]

M. Misiurewicz, Permutations and topological entropy for interval maps, Nonlinearity, 16 (2003), 971-976. doi: 10.1088/0951-7715/16/3/310.

[13]

N. Nicolaou and J. Georgiou, The use of permutation entropy to characterize sleep electroencephalograms, Clinical EEG and Neuroscience, 42 (2011), 24-28. doi: 10.1177/155005941104200107.

[14]

K. R. Parthasarathy (ed.), II - Probability Measures in A Metric Space, Probability and Mathematical Statistics: A Series of Monographs and Textbooks, Academic Press, 1967. doi: 10.1016/C2013-0-08107-8.

[15]

A. SilvaH. Cardoso-CruzF. SilvaV. Galhardo and L. Antunes, Comparison of anesthetic depth indexes based on thalamocortical local field potentials in rats, Anesthesiology, 112 (2010), 355-363. doi: 10.1097/ALN.0b013e3181ca3196.

[16]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer New York, 2000.

show all references

References:
[1]

J. M. AmigóM. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D: Nonlinear Phenomena, 210 (2005), 77-95. doi: 10.1016/j.physd.2005.07.006.

[2]

C. BandtG. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity, 15 (2002), 1595-1602. doi: 10.1088/0951-7715/15/5/312.

[3]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. doi: 10.1103/PhysRevLett.88.174102.

[4]

K. Dajani, C. Kraaikamp and M. A. of America, Ergodic Theory of Numbers, no. Bd. 29 in Carus Mathematical Monographs, Mathematical Association of America, 2002. doi: 10.5948/UPO9781614440277.

[5]

M. Einsiedler and T. Ward, Ergodic Theory: With a View Towards Number Theory, Graduate Texts in Mathematics, 259. Springer-Verlag London, Ltd., London, 2011. doi: 10.1007/978-0-85729-021-2.

[6]

M. Einsiedler, E. Lindenstrauss and T. Ward, Entropy in ergodic theory and homogeneous dynamics, 2017., Available from: https://tbward0.wixsite.com/books/entropy.

[7]

S. Heinemann and O. Schmitt, Rokhlin's Lemma for Non-invertible Maps, Mathematica Gottingensis, Math. Inst., 2000.

[8]

G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts, Cambridge University Press, 1998. doi: 10.1017/CBO9781107359987.

[9]

K. KellerA. M. Unakafov and V. A. Unakafova, On the relation of ks entropy and permutation entropy, Physica D: Nonlinear Phenomena, 241 (2012), 1477-1481. doi: 10.1016/j.physd.2012.05.010.

[10]

A. Klenke, Probability Theory: A Comprehensive Course, Springer, 2008. doi: 10.1007/978-1-4471-5361-0.

[11]

X. LiG. Ouyang and D. A. Richards, Predictability analysis of absence seizures with permutation entropy, Epilepsy Research, 77 (2007), 70-74. doi: 10.1016/j.eplepsyres.2007.08.002.

[12]

M. Misiurewicz, Permutations and topological entropy for interval maps, Nonlinearity, 16 (2003), 971-976. doi: 10.1088/0951-7715/16/3/310.

[13]

N. Nicolaou and J. Georgiou, The use of permutation entropy to characterize sleep electroencephalograms, Clinical EEG and Neuroscience, 42 (2011), 24-28. doi: 10.1177/155005941104200107.

[14]

K. R. Parthasarathy (ed.), II - Probability Measures in A Metric Space, Probability and Mathematical Statistics: A Series of Monographs and Textbooks, Academic Press, 1967. doi: 10.1016/C2013-0-08107-8.

[15]

A. SilvaH. Cardoso-CruzF. SilvaV. Galhardo and L. Antunes, Comparison of anesthetic depth indexes based on thalamocortical local field potentials in rats, Anesthesiology, 112 (2010), 355-363. doi: 10.1097/ALN.0b013e3181ca3196.

[16]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer New York, 2000.

Figure 1.  Graph of the Gauss function T
Figure 2.  The striped area corresponds to the set $R = \{(\omega_1, \omega_2)\in\Omega^2|~\omega_1\leq \omega_2\}$ and the gray area to $(T\times T)^{-1}(R)$ for the Gauss function $T$
[1]

Karsten Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 891-900. doi: 10.3934/dcds.2012.32.891

[2]

Alexandra Antoniouk, Karsten Keller, Sergiy Maksymenko. Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1793-1809. doi: 10.3934/dcds.2014.34.1793

[3]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[4]

C. Kopf. Symbol sequences and entropy for piecewise monotone transformations with discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 299-304. doi: 10.3934/dcds.2000.6.299

[5]

Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks & Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008

[6]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[7]

Sebastian van Strien. One-dimensional dynamics in the new millennium. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 557-588. doi: 10.3934/dcds.2010.27.557

[8]

Francisco J. López-Hernández. Dynamics of induced homeomorphisms of one-dimensional solenoids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4243-4257. doi: 10.3934/dcds.2018185

[9]

Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027

[10]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations & Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

[11]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[12]

Steffen Klassert, Daniel Lenz, Peter Stollmann. Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1553-1571. doi: 10.3934/dcds.2011.29.1553

[13]

Xu Zhang. Sinai-Ruelle-Bowen measures for piecewise hyperbolic maps with two directions of instability in three-dimensional spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2873-2886. doi: 10.3934/dcds.2016.36.2873

[14]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics. Conference Publications, 2013, 2013 (special) : 515-524. doi: 10.3934/proc.2013.2013.515

[15]

Ben Duan, Zhen Luo. Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2543-2564. doi: 10.3934/cpaa.2013.12.2543

[16]

Maria do Carmo Pacheco de Toledo, Sergio Muniz Oliva. A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1041-1060. doi: 10.3934/dcds.2009.23.1041

[17]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[18]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[19]

Maria João Costa. Chaotic behaviour of one-dimensional horseshoes. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 505-548. doi: 10.3934/dcds.2003.9.505

[20]

Yunping Jiang. On a question of Katok in one-dimensional case. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209

2017 Impact Factor: 1.179

Article outline

Figures and Tables

[Back to Top]