January  2020, 40(1): 1-32. doi: 10.3934/dcds.2020001

Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $

1. 

Institute of Physics, Jagiellonian University, Kraków, Poland

2. 

Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Received  August 2018 Published  October 2019

Fund Project: This research was supported by the Polish National Science Centre grant no. 2017/26/A/ST2/00530.

We consider the resonant system of amplitude equations for the conformally invariant cubic wave equation on the three-sphere. Using the local bifurcation theory, we characterize all stationary states that bifurcate from the first two eigenmodes. Thanks to the variational formulation of the resonant system and energy conservation, we also determine variational characterization and stability of the bifurcating states. For the lowest eigenmode, we obtain two orbitally stable families of the bifurcating stationary states: one is a constrained maximizer of energy and the other one is a local constrained minimizer of the energy, where the constraints are due to other conserved quantities of the resonant system. For the second eigenmode, we obtain two local constrained minimizers of the energy, which are also orbitally stable in the time evolution. All other bifurcating states are saddle points of energy under these constraints and their stability in the time evolution is unknown.

Citation: Piotr Bizoń, Dominika Hunik-Kostyra, Dmitry Pelinovsky. Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 1-32. doi: 10.3934/dcds.2020001
References:
[1]

A. Biasi, P. Bizoń, B. Craps and O. Evnin, Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A, 96 (2017), 053615. Google Scholar

[2]

A. BiasiP. Bizoń and O. Evnin, Solvable cubic resonant systems, Commun. Math. Phys., 369 (2019), 433-456.  doi: 10.1007/s00220-019-03365-z.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb{S}^3$ and weak field integrability in $AdS_4$, Commun. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. BizońD. Hunik–Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb{S}^3$, Commun. Pure Appl. Math., 72 (2019), 1123-1151.  doi: 10.1002/cpa.21815.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Undergraduate Texts in Mathematics, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

P. GérardP. Germain and L. Thomann, On the cubic lowest Landau level equation, Arch. Rat. Mech. Appl., 231 (2019), 1073-1128.  doi: 10.1007/s00205-018-1295-4.  Google Scholar

[8]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[9]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[10]

P. Gérard and E. Lenzmann, A Lax pair structure for the half-wave maps equation, Lett. Math. Phys., 108 (2018), 1635-1648.  doi: 10.1007/s11005-017-1044-x.  Google Scholar

[11]

P. GermainZ. Hani and L. Thomann, On the continuous resonant equation for NLS: I. Deterministic analysis, J. Math. Pur. App., 105 (2016), 131-163.  doi: 10.1016/j.matpur.2015.10.002.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[13]

E. Lenzmann and A. Schikorra, On energy-critical half-wave maps to $\mathcal{S}^2$, Invent. Math., 213 (2018), 1-82.  doi: 10.1007/s00222-018-0785-1.  Google Scholar

[14] D. E. Pelinovsky, Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation, LMS Lecture Note Series, 390, Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511997754.  Google Scholar
[15]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[16]

J. Thirouin, Classification of traveling waves for a quadratic Szegő equation, Discr. Cont. Dynam. Syst., 39 (2019), 3099-3122.  doi: 10.3934/dcds.2019128.  Google Scholar

show all references

References:
[1]

A. Biasi, P. Bizoń, B. Craps and O. Evnin, Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A, 96 (2017), 053615. Google Scholar

[2]

A. BiasiP. Bizoń and O. Evnin, Solvable cubic resonant systems, Commun. Math. Phys., 369 (2019), 433-456.  doi: 10.1007/s00220-019-03365-z.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb{S}^3$ and weak field integrability in $AdS_4$, Commun. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. BizońD. Hunik–Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb{S}^3$, Commun. Pure Appl. Math., 72 (2019), 1123-1151.  doi: 10.1002/cpa.21815.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Undergraduate Texts in Mathematics, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

P. GérardP. Germain and L. Thomann, On the cubic lowest Landau level equation, Arch. Rat. Mech. Appl., 231 (2019), 1073-1128.  doi: 10.1007/s00205-018-1295-4.  Google Scholar

[8]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[9]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[10]

P. Gérard and E. Lenzmann, A Lax pair structure for the half-wave maps equation, Lett. Math. Phys., 108 (2018), 1635-1648.  doi: 10.1007/s11005-017-1044-x.  Google Scholar

[11]

P. GermainZ. Hani and L. Thomann, On the continuous resonant equation for NLS: I. Deterministic analysis, J. Math. Pur. App., 105 (2016), 131-163.  doi: 10.1016/j.matpur.2015.10.002.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[13]

E. Lenzmann and A. Schikorra, On energy-critical half-wave maps to $\mathcal{S}^2$, Invent. Math., 213 (2018), 1-82.  doi: 10.1007/s00222-018-0785-1.  Google Scholar

[14] D. E. Pelinovsky, Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation, LMS Lecture Note Series, 390, Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511997754.  Google Scholar
[15]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[16]

J. Thirouin, Classification of traveling waves for a quadratic Szegő equation, Discr. Cont. Dynam. Syst., 39 (2019), 3099-3122.  doi: 10.3934/dcds.2019128.  Google Scholar

Figure 1.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the stationary state (1.4) for the upper sign normalized by $ \lambda = 1 $
Figure 2.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the stationary state (1.4) for the lower sign normalized by $ \lambda-\omega = 1 $
Figure 3.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the branch bifurcating from the second eigenmode at $ \omega_6 = 3/35 $ with normalization $ \lambda-\omega = 1 $
[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[3]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[4]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[5]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[6]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[7]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[8]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[9]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[10]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[11]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[12]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[13]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[14]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[15]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[16]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[17]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[18]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[19]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[20]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (218)
  • HTML views (114)
  • Cited by (1)

[Back to Top]