January  2020, 40(1): 1-32. doi: 10.3934/dcds.2020001

Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $

1. 

Institute of Physics, Jagiellonian University, Kraków, Poland

2. 

Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Received  August 2018 Published  October 2019

Fund Project: This research was supported by the Polish National Science Centre grant no. 2017/26/A/ST2/00530.

We consider the resonant system of amplitude equations for the conformally invariant cubic wave equation on the three-sphere. Using the local bifurcation theory, we characterize all stationary states that bifurcate from the first two eigenmodes. Thanks to the variational formulation of the resonant system and energy conservation, we also determine variational characterization and stability of the bifurcating states. For the lowest eigenmode, we obtain two orbitally stable families of the bifurcating stationary states: one is a constrained maximizer of energy and the other one is a local constrained minimizer of the energy, where the constraints are due to other conserved quantities of the resonant system. For the second eigenmode, we obtain two local constrained minimizers of the energy, which are also orbitally stable in the time evolution. All other bifurcating states are saddle points of energy under these constraints and their stability in the time evolution is unknown.

Citation: Piotr Bizoń, Dominika Hunik-Kostyra, Dmitry Pelinovsky. Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 1-32. doi: 10.3934/dcds.2020001
References:
[1]

A. Biasi, P. Bizoń, B. Craps and O. Evnin, Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A, 96 (2017), 053615. Google Scholar

[2]

A. BiasiP. Bizoń and O. Evnin, Solvable cubic resonant systems, Commun. Math. Phys., 369 (2019), 433-456.  doi: 10.1007/s00220-019-03365-z.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb{S}^3$ and weak field integrability in $AdS_4$, Commun. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. BizońD. Hunik–Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb{S}^3$, Commun. Pure Appl. Math., 72 (2019), 1123-1151.  doi: 10.1002/cpa.21815.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Undergraduate Texts in Mathematics, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

P. GérardP. Germain and L. Thomann, On the cubic lowest Landau level equation, Arch. Rat. Mech. Appl., 231 (2019), 1073-1128.  doi: 10.1007/s00205-018-1295-4.  Google Scholar

[8]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[9]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[10]

P. Gérard and E. Lenzmann, A Lax pair structure for the half-wave maps equation, Lett. Math. Phys., 108 (2018), 1635-1648.  doi: 10.1007/s11005-017-1044-x.  Google Scholar

[11]

P. GermainZ. Hani and L. Thomann, On the continuous resonant equation for NLS: I. Deterministic analysis, J. Math. Pur. App., 105 (2016), 131-163.  doi: 10.1016/j.matpur.2015.10.002.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[13]

E. Lenzmann and A. Schikorra, On energy-critical half-wave maps to $\mathcal{S}^2$, Invent. Math., 213 (2018), 1-82.  doi: 10.1007/s00222-018-0785-1.  Google Scholar

[14] D. E. Pelinovsky, Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation, LMS Lecture Note Series, 390, Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511997754.  Google Scholar
[15]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[16]

J. Thirouin, Classification of traveling waves for a quadratic Szegő equation, Discr. Cont. Dynam. Syst., 39 (2019), 3099-3122.  doi: 10.3934/dcds.2019128.  Google Scholar

show all references

References:
[1]

A. Biasi, P. Bizoń, B. Craps and O. Evnin, Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A, 96 (2017), 053615. Google Scholar

[2]

A. BiasiP. Bizoń and O. Evnin, Solvable cubic resonant systems, Commun. Math. Phys., 369 (2019), 433-456.  doi: 10.1007/s00220-019-03365-z.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb{S}^3$ and weak field integrability in $AdS_4$, Commun. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. BizońD. Hunik–Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb{S}^3$, Commun. Pure Appl. Math., 72 (2019), 1123-1151.  doi: 10.1002/cpa.21815.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Undergraduate Texts in Mathematics, 251, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

P. GérardP. Germain and L. Thomann, On the cubic lowest Landau level equation, Arch. Rat. Mech. Appl., 231 (2019), 1073-1128.  doi: 10.1007/s00205-018-1295-4.  Google Scholar

[8]

P. Gérard and S. Grellier, The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup., 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[9]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[10]

P. Gérard and E. Lenzmann, A Lax pair structure for the half-wave maps equation, Lett. Math. Phys., 108 (2018), 1635-1648.  doi: 10.1007/s11005-017-1044-x.  Google Scholar

[11]

P. GermainZ. Hani and L. Thomann, On the continuous resonant equation for NLS: I. Deterministic analysis, J. Math. Pur. App., 105 (2016), 131-163.  doi: 10.1016/j.matpur.2015.10.002.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[13]

E. Lenzmann and A. Schikorra, On energy-critical half-wave maps to $\mathcal{S}^2$, Invent. Math., 213 (2018), 1-82.  doi: 10.1007/s00222-018-0785-1.  Google Scholar

[14] D. E. Pelinovsky, Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation, LMS Lecture Note Series, 390, Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511997754.  Google Scholar
[15]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[16]

J. Thirouin, Classification of traveling waves for a quadratic Szegő equation, Discr. Cont. Dynam. Syst., 39 (2019), 3099-3122.  doi: 10.3934/dcds.2019128.  Google Scholar

Figure 1.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the stationary state (1.4) for the upper sign normalized by $ \lambda = 1 $
Figure 2.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the stationary state (1.4) for the lower sign normalized by $ \lambda-\omega = 1 $
Figure 3.  The smallest eigenvalues of $ L_+ $ (left) and $ L_- $ (right) for the branch bifurcating from the second eigenmode at $ \omega_6 = 3/35 $ with normalization $ \lambda-\omega = 1 $
[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[4]

Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249

[5]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[6]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[7]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[8]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[9]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[10]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[11]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[12]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[13]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[17]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[18]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[19]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[20]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (207)
  • HTML views (113)
  • Cited by (1)

[Back to Top]