
-
Previous Article
Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line
- DCDS Home
- This Issue
-
Next Article
Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $
Hereditarily non uniformly perfect non-autonomous Julia sets
1. | Department of Mathematics, University of Rhode Island, 5 Lippitt Road, Room 102F, Kingston, RI 02881, USA |
2. | Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA |
3. | Course of Mathematical Science, Department of Human Coexistence, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan |
Hereditarily non uniformly perfect (HNUP) sets were introduced by Stankewitz, Sugawa, and Sumi in [
References:
[1] |
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Co., New York, third edition, 1978. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics. |
[2] |
Francisco Balibrea,
On problems of topological dynamics in non-autonomous discrete systems, Appl. Math. Nonlinear Sci., 1 (2016), 391-404.
doi: 10.21042/AMNS.2016.2.00034. |
[3] |
E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC, Boca Raton, FL, 2008. |
[4] |
L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4364-9. |
[5] |
M. Comerford, A survey of results in random iteration, Proceedings Symposia in Pure Mathematics, American Mathematical Society, 72 (2004), 435–476. |
[6] |
M. Comerford,
Hyperbolic non-autonomous Julia sets, Ergodic Theory Dynamical Systems, 26 (2006), 353-377.
doi: 10.1017/S0143385705000441. |
[7] |
A. Eremenko, Julia Sets are Uniformly Perfect, Preprint, Purdue University, 1992. Google Scholar |
[8] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, third edition, 2014. Mathematical foundations and applications. |
[9] |
J. E. Fornæss and N. Sibony,
Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11 (1991), 687-708.
doi: 10.1017/S0143385700006428. |
[10] |
A. Hinkkanen,
Julia sets of rational functions are uniformly perfect, Math. Proc. Cambridge Philos. Soc., 113 (1993), 543-559.
doi: 10.1017/S0305004100076192. |
[11] |
S. Kolyada and L. Snoha,
Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam., (4) (1996), 205-233.
|
[12] |
R. Mañé and L. F. da Rocha,
Julia sets are uniformly perfect, Proc. Amer. Math. Soc., 116 (1992), 251-257.
doi: 10.1090/S0002-9939-1992-1106180-2. |
[13] |
C. T. McMullen, Complex Dynamics and Renormalization, Volume 135 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1994.
![]() |
[14] |
C. T. McMullen,
Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.
doi: 10.1007/s00039-010-0078-3. |
[15] |
L. Rempe-Gillen and M. Urbański,
Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc., 368 (2016), 1979-2017.
doi: 10.1090/tran/6490. |
[16] |
O. Sester,
Hyperbolicité des polynȏmes fibrés, (French) [Hyperbolicity of fibered polynomials], Bull. Soc. Math. France, 127 (1999), 398-428.
|
[17] |
R. Stankewitz,
Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's, Proc. Amer. Math. Soc., 128 (2000), 2569-2575.
doi: 10.1090/S0002-9939-00-05313-2. |
[18] |
R. Stankewitz,
Density of repelling fixed points in the Julia set of a rational or entire semigroup, Ⅱ, Discrete Contin. Dyn. Syst., 32 (2012), 2583-2589.
doi: 10.3934/dcds.2012.32.2583. |
[19] |
R. Stankewitz, H. Sumi and T. Sugawa,
Hereditarily non uniformly perfect sets, Discrete Contin. Dyn. Syst S, 12 (2019), 2391-2402.
doi: 10.3934/dcdss.2019150. |
[20] |
H. Sumi,
Skew product maps related to finitely generated rational semigroups, Nonlinearity, 13 (2000), 995-1019.
doi: 10.1088/0951-7715/13/4/302. |
[21] |
H. Sumi,
Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products, Ergodic Theory Dynam. Systems, 21 (2001), 563-603.
doi: 10.1017/S0143385701001286. |
[22] |
H. Sumi,
Semi-hyperbolic fibered rational maps and rational semigroups, Ergodic Theory Dynam. Systems, 26 (2006), 893-922.
doi: 10.1017/S0143385705000532. |
[23] |
H. Sumi,
Dynamics of postcritically bounded polynomial semigroups Ⅲ: classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles, Ergodic Theory Dynam. Systems, 30 (2010), 1869-1902.
doi: 10.1017/S0143385709000923. |
[24] |
W. Zhiying,
Moran sets and Moran classes, Chinese Sci. Bull., 46 (2001), 1849-1856.
doi: 10.1007/BF02901155. |
show all references
References:
[1] |
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Co., New York, third edition, 1978. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics. |
[2] |
Francisco Balibrea,
On problems of topological dynamics in non-autonomous discrete systems, Appl. Math. Nonlinear Sci., 1 (2016), 391-404.
doi: 10.21042/AMNS.2016.2.00034. |
[3] |
E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC, Boca Raton, FL, 2008. |
[4] |
L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4364-9. |
[5] |
M. Comerford, A survey of results in random iteration, Proceedings Symposia in Pure Mathematics, American Mathematical Society, 72 (2004), 435–476. |
[6] |
M. Comerford,
Hyperbolic non-autonomous Julia sets, Ergodic Theory Dynamical Systems, 26 (2006), 353-377.
doi: 10.1017/S0143385705000441. |
[7] |
A. Eremenko, Julia Sets are Uniformly Perfect, Preprint, Purdue University, 1992. Google Scholar |
[8] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, third edition, 2014. Mathematical foundations and applications. |
[9] |
J. E. Fornæss and N. Sibony,
Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11 (1991), 687-708.
doi: 10.1017/S0143385700006428. |
[10] |
A. Hinkkanen,
Julia sets of rational functions are uniformly perfect, Math. Proc. Cambridge Philos. Soc., 113 (1993), 543-559.
doi: 10.1017/S0305004100076192. |
[11] |
S. Kolyada and L. Snoha,
Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam., (4) (1996), 205-233.
|
[12] |
R. Mañé and L. F. da Rocha,
Julia sets are uniformly perfect, Proc. Amer. Math. Soc., 116 (1992), 251-257.
doi: 10.1090/S0002-9939-1992-1106180-2. |
[13] |
C. T. McMullen, Complex Dynamics and Renormalization, Volume 135 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1994.
![]() |
[14] |
C. T. McMullen,
Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.
doi: 10.1007/s00039-010-0078-3. |
[15] |
L. Rempe-Gillen and M. Urbański,
Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc., 368 (2016), 1979-2017.
doi: 10.1090/tran/6490. |
[16] |
O. Sester,
Hyperbolicité des polynȏmes fibrés, (French) [Hyperbolicity of fibered polynomials], Bull. Soc. Math. France, 127 (1999), 398-428.
|
[17] |
R. Stankewitz,
Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's, Proc. Amer. Math. Soc., 128 (2000), 2569-2575.
doi: 10.1090/S0002-9939-00-05313-2. |
[18] |
R. Stankewitz,
Density of repelling fixed points in the Julia set of a rational or entire semigroup, Ⅱ, Discrete Contin. Dyn. Syst., 32 (2012), 2583-2589.
doi: 10.3934/dcds.2012.32.2583. |
[19] |
R. Stankewitz, H. Sumi and T. Sugawa,
Hereditarily non uniformly perfect sets, Discrete Contin. Dyn. Syst S, 12 (2019), 2391-2402.
doi: 10.3934/dcdss.2019150. |
[20] |
H. Sumi,
Skew product maps related to finitely generated rational semigroups, Nonlinearity, 13 (2000), 995-1019.
doi: 10.1088/0951-7715/13/4/302. |
[21] |
H. Sumi,
Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products, Ergodic Theory Dynam. Systems, 21 (2001), 563-603.
doi: 10.1017/S0143385701001286. |
[22] |
H. Sumi,
Semi-hyperbolic fibered rational maps and rational semigroups, Ergodic Theory Dynam. Systems, 26 (2006), 893-922.
doi: 10.1017/S0143385705000532. |
[23] |
H. Sumi,
Dynamics of postcritically bounded polynomial semigroups Ⅲ: classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles, Ergodic Theory Dynam. Systems, 30 (2010), 1869-1902.
doi: 10.1017/S0143385709000923. |
[24] |
W. Zhiying,
Moran sets and Moran classes, Chinese Sci. Bull., 46 (2001), 1849-1856.
doi: 10.1007/BF02901155. |


[1] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[2] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[3] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[4] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[5] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[6] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[7] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[8] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[9] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[10] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[11] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[12] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[13] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[14] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]