-
Previous Article
Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems
- DCDS Home
- This Issue
-
Next Article
Hereditarily non uniformly perfect non-autonomous Julia sets
Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line
1. | Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, UK |
2. | National Center for Theoretical Sciences, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd., Taipei 10617, Taiwan |
We prove the unconditional uniqueness of solutions to the derivative nonlinear Schrödinger equation (DNLS) in an almost end-point regularity. To this purpose, we employ the normal form method and we transform (a gauge-equivalent) DNLS into a new equation (the so-called normal form equation) for which nonlinear estimates can be easily established in $ H^s({\mathbb{R}}) $, $ s>\frac12 $, without appealing to an auxiliary function space. Also, we prove that low-regularity solutions of DNLS satisfy the normal form equation and this is done by means of estimates in the $ H^{s-1}({\mathbb{R}}) $-norm.
References:
[1] |
A. Babin, A. Ilyin and E. Titi,
On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591-648.
doi: 10.1002/cpa.20356. |
[2] |
H. A. Biagioni and F. Linares,
Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659.
doi: 10.1090/S0002-9947-01-02754-4. |
[3] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations Ⅰ. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107–156.
doi: 10.1007/BF01896020. |
[4] |
M. Christ, Power series solution of a nonlinear Schrödinger equation, In: Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud., Princeton, NJ: Princeton Univ. Press, 163 (2007), 131–155. |
[5] |
M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, arXiv: 0503366. Google Scholar |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.
doi: 10.1137/S0036141001384387. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
A refined global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86.
doi: 10.1137/S0036141001394541. |
[8] |
M. B. Erdoğan, T. B. Gürel and N. Tzirakis,
The derivative nonlinear Schrödinger equation on the half line, Ann. I. H. Poincaré Anal. Non Linéaire, 35 (2018), 1947-1973.
doi: 10.1016/j.anihpc.2018.03.006. |
[9] |
M. B. Erdoğan and N. Tzirakis,
Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., 20 (2013), 4589-4614.
doi: 10.1093/imrn/rns189. |
[10] |
J. Forlano and T. Oh, On the uniqueness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, preprint. Google Scholar |
[11] |
N. Fukaya, M. Hayashi and T. Inui,
A sufficient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation, Anal. PDE, 10 (2017), 1149-1167.
doi: 10.2140/apde.2017.10.1149. |
[12] |
G. Furioli, F. Planchon and E. Terraneo, Unconditional well-posedness for semi-linear Schrodinger equations in $H^s$, Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), Contemporary Mathematics, 320 (2003), 147–156.
doi: 10.1090/conm/320/05604. |
[13] |
A. Grünrock and S. Herr,
Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.
doi: 10.1137/070689139. |
[14] |
Z. Guo, S. Kwon and T. Oh,
Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Comm. Math. Phys., 322 (2013), 19-48.
doi: 10.1007/s00220-013-1755-5. |
[15] |
Z. Guo and Y. Wu,
Global well-posedness for the derivative nonlinear Schrodinger equation in $H^{1/2}(\mathbb{R})$, Disc. Cont. Dyn. Sys., 37 (2017), 257-264.
doi: 10.3934/dcds.2017010. |
[16] |
N. Hayashi,
The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833.
doi: 10.1016/0362-546X(93)90071-Y. |
[17] |
N. Hayashi and T. Ozawa,
On the derivative nonlinear Schrödinger equation, Physica D., 55 (1992), 14-36.
doi: 10.1016/0167-2789(92)90185-P. |
[18] |
N. Hayashi and T. Ozawa,
Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488-1503.
doi: 10.1137/S0036141093246129. |
[19] |
S. Herr and V. Sohinger, Unconditional uniqueness results for the nonlinear Schrödinger equation, 2018, arXiv: 1804.10631.
doi: 10.1142/S021919971850058X. |
[20] |
R. Jenkins, J. Liu, P. Perry and C. Sulem, Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities, arXiv: 1804.01506v2. Google Scholar |
[21] |
T. Kato,
On nonlinear Schrödinger equations. Ⅱ. $H^s$-solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281-306.
doi: 10.1007/BF02787794. |
[22] |
D. J. Kaup and A. C. Newell,
An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19 (1978), 798-801.
doi: 10.1063/1.523737. |
[23] |
N. Kishimoto, Unconditional uniqueness of solutions for nonlinear dispersive equations, Proceedings of the 40th Sapporo Symposium on Partial Differential Equations, (2015), 78–82. Google Scholar |
[24] |
N. Kishimoto, Unconditional uniqueness for the periodic cubic derivative nonlinear Schrödinger equations, preprint. Google Scholar |
[25] |
S. Kwon and T. Oh, On unconditional well-posedness of modified KdV, Int. Math. Res. Not. IMRN, (2012), 3509–3534.
doi: 10.1093/imrn/rnr156. |
[26] |
S. Kwon, T. Oh and H. Yoon, Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse Math., (to appear). Google Scholar |
[27] |
J. H. Lee,
Global solvability of the derivative nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 314 (1989), 107-118.
doi: 10.2307/2001438. |
[28] |
C. Miao, Y. Wu and G. Xu,
Global well-posedness for Schrödinger equation with derivative in $H^{1/2}(\mathbb{R})$, J. Differential Equations, 251 (2011), 2164-2195.
doi: 10.1016/j.jde.2011.07.004. |
[29] |
E. Mjølhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Physics, 16 (1976), 321-334. Google Scholar |
[30] |
R. O. Mosincat, Well-posedness of the One-dimensional Derivative Nonlinear Schrödinger Equation, PhD Thesis, University of Edinburgh, 2018. Google Scholar |
[31] |
T. Oh,
A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac., 60 (2017), 259-277.
|
[32] |
T. Oh and Y. Wang, Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, Forum Math. Sigma, 6 (2018), e5, 80 pp.
doi: 10.1017/fms.2018.4. |
[33] |
D. E. Pelinovsky and Y. Shimabukuro, Existence of global solutions to the derivative NLS equation with the inverse scattering transform method, Int. Math. Res. Not., 2018, 5663–5728.
doi: 10.1093/imrn/rnx051. |
[34] |
D. Pornnonpparath,
Small data well-posedness for derivative nonlinear Schrödinger equations, J. Differential Equations, 265 (2018), 3792-3840.
doi: 10.1016/j.jde.2018.05.016. |
[35] |
A. Rogister, Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma, Phys. Fluids, 14 (1971), 2733-2739. Google Scholar |
[36] |
H. Takaoka,
Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Eq., 4 (1999), 561-580.
|
[37] |
T. Tao,
Multilinear weighted convolution of $L^2$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.
doi: 10.1353/ajm.2001.0035. |
[38] |
Y. Y. Su Win,
Unconditional uniqueness of the derivative nonlinear Schrödinger equation in energy space, J. Math. Kyoto Univ., 48 (2008), 683-697.
doi: 10.1215/kjm/1250271390. |
[39] |
Y. Y. Su Win and Y. Tsutsumi,
Unconditional uniqueness of solution for the Cauchy problem of the nonlinear Schrödinger equation, Hokkaido Math. J., 37 (2008), 839-859.
doi: 10.14492/hokmj/1249046372. |
[40] |
Y. Wu,
Global well-posedness of the derivative nonlinear Schrödinger equations in energy space, Anal. PDE, 6 (2013), 1989-2002.
doi: 10.2140/apde.2013.6.1989. |
[41] |
Y. Wu,
Global well-posedness on the derivative nonlinear Schrödinger equation, Anal. PDE, 8 (2015), 1101-1112.
doi: 10.2140/apde.2015.8.1101. |
[42] |
Y. Zhou, Uniqueness of weak solution of the KdV equation, Int. Math. Res. Not., 1997,271–283.
doi: 10.1155/S1073792897000202. |
show all references
References:
[1] |
A. Babin, A. Ilyin and E. Titi,
On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591-648.
doi: 10.1002/cpa.20356. |
[2] |
H. A. Biagioni and F. Linares,
Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659.
doi: 10.1090/S0002-9947-01-02754-4. |
[3] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations Ⅰ. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107–156.
doi: 10.1007/BF01896020. |
[4] |
M. Christ, Power series solution of a nonlinear Schrödinger equation, In: Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud., Princeton, NJ: Princeton Univ. Press, 163 (2007), 131–155. |
[5] |
M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, arXiv: 0503366. Google Scholar |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.
doi: 10.1137/S0036141001384387. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
A refined global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86.
doi: 10.1137/S0036141001394541. |
[8] |
M. B. Erdoğan, T. B. Gürel and N. Tzirakis,
The derivative nonlinear Schrödinger equation on the half line, Ann. I. H. Poincaré Anal. Non Linéaire, 35 (2018), 1947-1973.
doi: 10.1016/j.anihpc.2018.03.006. |
[9] |
M. B. Erdoğan and N. Tzirakis,
Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., 20 (2013), 4589-4614.
doi: 10.1093/imrn/rns189. |
[10] |
J. Forlano and T. Oh, On the uniqueness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, preprint. Google Scholar |
[11] |
N. Fukaya, M. Hayashi and T. Inui,
A sufficient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation, Anal. PDE, 10 (2017), 1149-1167.
doi: 10.2140/apde.2017.10.1149. |
[12] |
G. Furioli, F. Planchon and E. Terraneo, Unconditional well-posedness for semi-linear Schrodinger equations in $H^s$, Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), Contemporary Mathematics, 320 (2003), 147–156.
doi: 10.1090/conm/320/05604. |
[13] |
A. Grünrock and S. Herr,
Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.
doi: 10.1137/070689139. |
[14] |
Z. Guo, S. Kwon and T. Oh,
Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Comm. Math. Phys., 322 (2013), 19-48.
doi: 10.1007/s00220-013-1755-5. |
[15] |
Z. Guo and Y. Wu,
Global well-posedness for the derivative nonlinear Schrodinger equation in $H^{1/2}(\mathbb{R})$, Disc. Cont. Dyn. Sys., 37 (2017), 257-264.
doi: 10.3934/dcds.2017010. |
[16] |
N. Hayashi,
The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833.
doi: 10.1016/0362-546X(93)90071-Y. |
[17] |
N. Hayashi and T. Ozawa,
On the derivative nonlinear Schrödinger equation, Physica D., 55 (1992), 14-36.
doi: 10.1016/0167-2789(92)90185-P. |
[18] |
N. Hayashi and T. Ozawa,
Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488-1503.
doi: 10.1137/S0036141093246129. |
[19] |
S. Herr and V. Sohinger, Unconditional uniqueness results for the nonlinear Schrödinger equation, 2018, arXiv: 1804.10631.
doi: 10.1142/S021919971850058X. |
[20] |
R. Jenkins, J. Liu, P. Perry and C. Sulem, Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities, arXiv: 1804.01506v2. Google Scholar |
[21] |
T. Kato,
On nonlinear Schrödinger equations. Ⅱ. $H^s$-solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281-306.
doi: 10.1007/BF02787794. |
[22] |
D. J. Kaup and A. C. Newell,
An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19 (1978), 798-801.
doi: 10.1063/1.523737. |
[23] |
N. Kishimoto, Unconditional uniqueness of solutions for nonlinear dispersive equations, Proceedings of the 40th Sapporo Symposium on Partial Differential Equations, (2015), 78–82. Google Scholar |
[24] |
N. Kishimoto, Unconditional uniqueness for the periodic cubic derivative nonlinear Schrödinger equations, preprint. Google Scholar |
[25] |
S. Kwon and T. Oh, On unconditional well-posedness of modified KdV, Int. Math. Res. Not. IMRN, (2012), 3509–3534.
doi: 10.1093/imrn/rnr156. |
[26] |
S. Kwon, T. Oh and H. Yoon, Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse Math., (to appear). Google Scholar |
[27] |
J. H. Lee,
Global solvability of the derivative nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 314 (1989), 107-118.
doi: 10.2307/2001438. |
[28] |
C. Miao, Y. Wu and G. Xu,
Global well-posedness for Schrödinger equation with derivative in $H^{1/2}(\mathbb{R})$, J. Differential Equations, 251 (2011), 2164-2195.
doi: 10.1016/j.jde.2011.07.004. |
[29] |
E. Mjølhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Physics, 16 (1976), 321-334. Google Scholar |
[30] |
R. O. Mosincat, Well-posedness of the One-dimensional Derivative Nonlinear Schrödinger Equation, PhD Thesis, University of Edinburgh, 2018. Google Scholar |
[31] |
T. Oh,
A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac., 60 (2017), 259-277.
|
[32] |
T. Oh and Y. Wang, Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, Forum Math. Sigma, 6 (2018), e5, 80 pp.
doi: 10.1017/fms.2018.4. |
[33] |
D. E. Pelinovsky and Y. Shimabukuro, Existence of global solutions to the derivative NLS equation with the inverse scattering transform method, Int. Math. Res. Not., 2018, 5663–5728.
doi: 10.1093/imrn/rnx051. |
[34] |
D. Pornnonpparath,
Small data well-posedness for derivative nonlinear Schrödinger equations, J. Differential Equations, 265 (2018), 3792-3840.
doi: 10.1016/j.jde.2018.05.016. |
[35] |
A. Rogister, Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma, Phys. Fluids, 14 (1971), 2733-2739. Google Scholar |
[36] |
H. Takaoka,
Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Eq., 4 (1999), 561-580.
|
[37] |
T. Tao,
Multilinear weighted convolution of $L^2$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.
doi: 10.1353/ajm.2001.0035. |
[38] |
Y. Y. Su Win,
Unconditional uniqueness of the derivative nonlinear Schrödinger equation in energy space, J. Math. Kyoto Univ., 48 (2008), 683-697.
doi: 10.1215/kjm/1250271390. |
[39] |
Y. Y. Su Win and Y. Tsutsumi,
Unconditional uniqueness of solution for the Cauchy problem of the nonlinear Schrödinger equation, Hokkaido Math. J., 37 (2008), 839-859.
doi: 10.14492/hokmj/1249046372. |
[40] |
Y. Wu,
Global well-posedness of the derivative nonlinear Schrödinger equations in energy space, Anal. PDE, 6 (2013), 1989-2002.
doi: 10.2140/apde.2013.6.1989. |
[41] |
Y. Wu,
Global well-posedness on the derivative nonlinear Schrödinger equation, Anal. PDE, 8 (2015), 1101-1112.
doi: 10.2140/apde.2015.8.1101. |
[42] |
Y. Zhou, Uniqueness of weak solution of the KdV equation, Int. Math. Res. Not., 1997,271–283.
doi: 10.1155/S1073792897000202. |
[1] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[2] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[3] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[4] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[5] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[6] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[7] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[8] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[9] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[10] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[11] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[12] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[13] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[14] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[15] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376 |
[16] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[17] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[18] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[19] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[20] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]