This article concerns with the existence of multiple positive solutions for the following logarithmic Schrödinger equation
$ \left\{ \begin{array}{lc} -{\epsilon}^2\Delta u+ V(x)u = u \log u^2, & \mbox{in} \quad \mathbb{R}^{N}, \\ u \in H^1(\mathbb{R}^{N}), & \; \\ \end{array} \right. $
where $ \epsilon >0 $, $ N \geq 1 $ and $ V $ is a continuous function with a global minimum. Using variational method, we prove that for small enough $ \epsilon>0 $, the "shape" of the graph of the function $ V $ affects the number of nontrivial solutions.
Citation: |
[1] | C. O. Alves and D. C. de Morais Filho, Existence of concentration of positive solutions for a Schrödinger logarithmic equation, Z. Angew. Math. Phys., 69 (2018), Art. 144, 22 pp. doi: 10.1007/s00033-018-1038-2. |
[2] | D. M. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in $\mathbb{R}^{N}$, Ann. Inst. Henri Poincaré, 13 (1996), 567-588. doi: 10.1016/S0294-1449(16)30115-9. |
[3] | P. d'Avenia, E. Montefusco and M. Squassina, On the logarithmic Schrödinger equation, Commun. Contemp. Math., 16 (2014), 1350032, 15 pp. doi: 10.1142/S0219199713500326. |
[4] | P. d'Avenia, M. Squassina and M. Zenari, Fractional logarithmic Schrödinger equations, Math. Methods Appl. Sci., 38 (2015), 5207-5216. doi: 10.1002/mma.3449. |
[5] | M. Degiovanni and S. Zani, Multiple solutions of semilinear elliptic equations with one-sided growth conditions. Nonlinear operator theory, Math. Comput. Model., 32 (2000), 1377-1393. doi: 10.1016/S0895-7177(00)00211-9. |
[6] | C. Ji and A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., 437 (2016), 241-254. doi: 10.1016/j.jmaa.2015.11.071. |
[7] | E. H. Lieb and M. Loss, Analysis, 2nd Edition, Graduate Studies in Math. 14, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014. |
[8] | P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. doi: 10.1016/S0294-1449(16)30422-X. |
[9] | M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger equations with periodic potential, Cal. Var. Partial Differential Equations, 54 (2015), 585-597. doi: 10.1007/s00526-014-0796-8. |
[10] | M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger equations with periodic potential, Cal. Var. Partial Differential Equations, 54 (2015), 585–597, http://dx.doi.org/10.1007/s00526-017-1127-7. doi: 10.1007/s00526-014-0796-8. |
[11] | A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77-109. doi: 10.1016/S0294-1449(16)30389-4. |
[12] | K. Tanaka and C. X. Zhang, Multi-bump solutions for logarithmic Schrödinger equations, Cal. Var. Partial Differential Equations, 56 (2017), Art. 33, 35 pp. doi: 10.1007/s00526-017-1122-z. |
[13] | M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1. |
[14] | K. G. Zloshchastiev, Logarithmic nonlinearity in the theories of quantum gravity: Origin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297. doi: 10.1134/S0202289310040067. |