July  2020, 40(7): 4287-4305. doi: 10.3934/dcds.2020181

On weak-strong uniqueness and singular limit for the compressible Primitive Equations

1. 

Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

2. 

Key Laboratory of Ministry of Education for Virtual Geographic Environment, Jiangsu Center for Collaborative Innovation in Geographical, Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China

3. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 11567, Praha 1, Czech Republic

4. 

Department of Mathematics, College of Sciences, Hohai University, Nanjing 210098, China

* Corresponding author

Received  June 2019 Revised  January 2020 Published  April 2020

Fund Project: The research of H. G is partially supported by the NSFC Grant No. 11531006. The research of Š.N. leading to these results has received funding from the Czech Sciences Foundation (GAČR), GA19-04243S and RVO 67985840. The research of T.T. is supported by the NSFC Grant No. 11801138

The paper addresses the weak-strong uniqueness property and singular limit for the compressible Primitive Equations (PE). We show that a weak solution coincides with the strong solution emanating from the same initial data. On the other hand, we prove compressible PE will approach to the incompressible inviscid PE equations in the regime of low Mach number and large Reynolds number in the case of well-prepared initial data. To the best of the authors' knowledge, this is the first work to bridge the link between the compressible PE with incompressible inviscid PE.

Citation: Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181
References:
[1]

Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.  doi: 10.1088/0951-7715/12/3/004.  Google Scholar

[2]

Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595.  doi: 10.1016/S0007-4497(03)00024-1.  Google Scholar

[3]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368.  doi: 10.1016/j.matpur.2006.06.005.  Google Scholar

[4]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[5]

D. BreschF. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations, 16 (2003), 77-94.   Google Scholar

[6]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.  Google Scholar

[7]

D. BreschA. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal., 36 (2004/05), 796-814.  doi: 10.1137/S0036141003422242.  Google Scholar

[8]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[9]

C. CaoJ. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76.  doi: 10.1007/s00205-014-0752-y.  Google Scholar

[10]

C. CaoJ. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math., 69 (2016), 1492-1531.  doi: 10.1002/cpa.21576.  Google Scholar

[11]

C. CaoJ. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: Near $H^1$ initial data, J. Funct. Anal., 272 (2017), 4606-4641.  doi: 10.1016/j.jfa.2017.01.018.  Google Scholar

[12]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[13] J.-Y. CheminB. DesjardinsI. Gallagher and E. Grenier, Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations, The Clarendon Press, Oxford University Press, Oxford, 2006.   Google Scholar
[14]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.  Google Scholar

[15]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[16]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[17]

Z. DongJ. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations, 263 (2017), 3110-3146.  doi: 10.1016/j.jde.2017.04.025.  Google Scholar

[18]

M. Ersoy and T. Ngom, Existence of a global weak solution to compressible primitive equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 379-382.  doi: 10.1016/j.crma.2012.04.013.  Google Scholar

[19]

M. ErsoyT. Ngom and M. Sy, Compressible primitive equations: Formal derivation and stability of weak solutions, Nonlinearity, 24 (2011), 79-96.  doi: 10.1088/0951-7715/24/1/004.  Google Scholar

[20]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Vol. 26, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004.  Google Scholar

[21]

E. FeireislI. Gallagher and A. Novotný, A singular limit for compressible rotating fluids, SIAM J. Math. Anal., 44 (2012), 192-205.  doi: 10.1137/100808010.  Google Scholar

[22]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.  Google Scholar

[23]

E. FeireislB. J. Jin and A. Novotný, Inviscid incompressible limits of strongly stratified fluids, Asymptot. Anal., 89 (2014), 307-329.  doi: 10.3233/ASY-141231.  Google Scholar

[24]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[25]

H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[26]

B. V. Gatapov and A. V. Kazhikhov, Existence of a global solution of a model problem of atmospheric dynamics, Siberian Math. J., 46 (2005), 805-812.  doi: 10.1007/s11202-005-0079-x.  Google Scholar

[27]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[28]

F. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 14 (2001), 1381-1408.   Google Scholar

[29]

B. Guo and D. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 23 pp. doi: 10.1063/1.2245207.  Google Scholar

[30]

B. Guo and D. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[31]

B. GuoD. Huang and W. Wang, Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force, J. Differential Equations, 259 (2015), 2388-2407.  doi: 10.1016/j.jde.2015.03.041.  Google Scholar

[32]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17, (2007), 159–179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[33]

R. Klein, Scale-dependent models for atmospheric flows, Annual Review of Fluid Mechanics, 42 (2010), 249-274.  doi: 10.1146/annurev-fluid-121108-145537.  Google Scholar

[34]

O. Kreml, Š. Nečasová and T. Piasecki, Local existence of strong solution and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2019), 1–46. doi: 10.1017/prm.2018.165.  Google Scholar

[35]

I. KukavicaR. TemamV. C. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differential Equations, 250 (2011), 1719-1746.  doi: 10.1016/j.jde.2010.07.032.  Google Scholar

[36]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20, (2007), 2739–2753. doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[37]

J. Li and Z. Xin, Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities, preprint, arXiv: 1504.06826. Google Scholar

[38]

J.-L. LionsO. P. ManleyR. Temam and S. H. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[39]

J.-L. LionsR. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[40]

J.-L. LionsR. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[41]

J.-L. LionsR. Temam and S. H. Wang, Mathematical theory for the coupled atmosphere-ocean models. (CAO Ⅲ), J. Math. Pures Appl., 74 (1995), 105-163.   Google Scholar

[42]

X. Liu and E. S. Titi, Local well-posedness of strong solutions to the three-dimensional compressible primitive equations, preprint, arXiv: 1806.09868. Google Scholar

[43]

X. Liu and E. S. Titi, Global existence of weak solutions to the compressible primitive equations of atmosphereic dynamics with degenerate viscositites, SIAM J. Math. Anal., 51 (2019), 1913-1964.  doi: 10.1137/18M1211994.  Google Scholar

[44]

X. Liu and E. S. Titi, Zero mach number limit of the compressible primitive equations part Ⅰ: Well-prepared initial data, preprint, arXiv: 1905.09367. Google Scholar

[45]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271.  doi: 10.1007/s00205-011-0485-0.  Google Scholar

[46]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

[47]

T. Tang and H. Gao, On the stability of weak solution for compressible primitive equations, Acta Appl. Math., 140 (2015), 133-145.  doi: 10.1007/s10440-014-9982-0.  Google Scholar

[48]

R. Temam and M. Ziane, Some Mathematical Problems in Geophysical Fluid Dynamics, Vol. 3, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 2004.  Google Scholar

[49]

A. F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935-974.  doi: 10.1007/s00222-016-0666-4.  Google Scholar

[50]

F. Wang, C. Dou and Q. Jiu, Global weak solutions to 3D compressible primitive equations with density-dependent viscosity, arXiv: 1712.04180. Google Scholar

[51]

S. Wang and P. Yang, Remarks on the Rayleigh-Bénard convection on spherical shells, J. Math. Fluid Mech., 15 (2013), 537-552.  doi: 10.1007/s00021-012-0128-8.  Google Scholar

show all references

References:
[1]

Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.  doi: 10.1088/0951-7715/12/3/004.  Google Scholar

[2]

Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595.  doi: 10.1016/S0007-4497(03)00024-1.  Google Scholar

[3]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368.  doi: 10.1016/j.matpur.2006.06.005.  Google Scholar

[4]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[5]

D. BreschF. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations, 16 (2003), 77-94.   Google Scholar

[6]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.  Google Scholar

[7]

D. BreschA. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal., 36 (2004/05), 796-814.  doi: 10.1137/S0036141003422242.  Google Scholar

[8]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[9]

C. CaoJ. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76.  doi: 10.1007/s00205-014-0752-y.  Google Scholar

[10]

C. CaoJ. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math., 69 (2016), 1492-1531.  doi: 10.1002/cpa.21576.  Google Scholar

[11]

C. CaoJ. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: Near $H^1$ initial data, J. Funct. Anal., 272 (2017), 4606-4641.  doi: 10.1016/j.jfa.2017.01.018.  Google Scholar

[12]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[13] J.-Y. CheminB. DesjardinsI. Gallagher and E. Grenier, Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations, The Clarendon Press, Oxford University Press, Oxford, 2006.   Google Scholar
[14]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.  Google Scholar

[15]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[16]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[17]

Z. DongJ. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations, 263 (2017), 3110-3146.  doi: 10.1016/j.jde.2017.04.025.  Google Scholar

[18]

M. Ersoy and T. Ngom, Existence of a global weak solution to compressible primitive equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 379-382.  doi: 10.1016/j.crma.2012.04.013.  Google Scholar

[19]

M. ErsoyT. Ngom and M. Sy, Compressible primitive equations: Formal derivation and stability of weak solutions, Nonlinearity, 24 (2011), 79-96.  doi: 10.1088/0951-7715/24/1/004.  Google Scholar

[20]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Vol. 26, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004.  Google Scholar

[21]

E. FeireislI. Gallagher and A. Novotný, A singular limit for compressible rotating fluids, SIAM J. Math. Anal., 44 (2012), 192-205.  doi: 10.1137/100808010.  Google Scholar

[22]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.  Google Scholar

[23]

E. FeireislB. J. Jin and A. Novotný, Inviscid incompressible limits of strongly stratified fluids, Asymptot. Anal., 89 (2014), 307-329.  doi: 10.3233/ASY-141231.  Google Scholar

[24]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[25]

H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[26]

B. V. Gatapov and A. V. Kazhikhov, Existence of a global solution of a model problem of atmospheric dynamics, Siberian Math. J., 46 (2005), 805-812.  doi: 10.1007/s11202-005-0079-x.  Google Scholar

[27]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[28]

F. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 14 (2001), 1381-1408.   Google Scholar

[29]

B. Guo and D. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 23 pp. doi: 10.1063/1.2245207.  Google Scholar

[30]

B. Guo and D. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[31]

B. GuoD. Huang and W. Wang, Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force, J. Differential Equations, 259 (2015), 2388-2407.  doi: 10.1016/j.jde.2015.03.041.  Google Scholar

[32]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17, (2007), 159–179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[33]

R. Klein, Scale-dependent models for atmospheric flows, Annual Review of Fluid Mechanics, 42 (2010), 249-274.  doi: 10.1146/annurev-fluid-121108-145537.  Google Scholar

[34]

O. Kreml, Š. Nečasová and T. Piasecki, Local existence of strong solution and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2019), 1–46. doi: 10.1017/prm.2018.165.  Google Scholar

[35]

I. KukavicaR. TemamV. C. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differential Equations, 250 (2011), 1719-1746.  doi: 10.1016/j.jde.2010.07.032.  Google Scholar

[36]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20, (2007), 2739–2753. doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[37]

J. Li and Z. Xin, Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities, preprint, arXiv: 1504.06826. Google Scholar

[38]

J.-L. LionsO. P. ManleyR. Temam and S. H. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[39]

J.-L. LionsR. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[40]

J.-L. LionsR. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[41]

J.-L. LionsR. Temam and S. H. Wang, Mathematical theory for the coupled atmosphere-ocean models. (CAO Ⅲ), J. Math. Pures Appl., 74 (1995), 105-163.   Google Scholar

[42]

X. Liu and E. S. Titi, Local well-posedness of strong solutions to the three-dimensional compressible primitive equations, preprint, arXiv: 1806.09868. Google Scholar

[43]

X. Liu and E. S. Titi, Global existence of weak solutions to the compressible primitive equations of atmosphereic dynamics with degenerate viscositites, SIAM J. Math. Anal., 51 (2019), 1913-1964.  doi: 10.1137/18M1211994.  Google Scholar

[44]

X. Liu and E. S. Titi, Zero mach number limit of the compressible primitive equations part Ⅰ: Well-prepared initial data, preprint, arXiv: 1905.09367. Google Scholar

[45]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271.  doi: 10.1007/s00205-011-0485-0.  Google Scholar

[46]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

[47]

T. Tang and H. Gao, On the stability of weak solution for compressible primitive equations, Acta Appl. Math., 140 (2015), 133-145.  doi: 10.1007/s10440-014-9982-0.  Google Scholar

[48]

R. Temam and M. Ziane, Some Mathematical Problems in Geophysical Fluid Dynamics, Vol. 3, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 2004.  Google Scholar

[49]

A. F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935-974.  doi: 10.1007/s00222-016-0666-4.  Google Scholar

[50]

F. Wang, C. Dou and Q. Jiu, Global weak solutions to 3D compressible primitive equations with density-dependent viscosity, arXiv: 1712.04180. Google Scholar

[51]

S. Wang and P. Yang, Remarks on the Rayleigh-Bénard convection on spherical shells, J. Math. Fluid Mech., 15 (2013), 537-552.  doi: 10.1007/s00021-012-0128-8.  Google Scholar

[1]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[2]

Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069

[3]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[4]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[5]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[6]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[7]

Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141

[8]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[9]

Eduard Feireisl, Hana Petzeltová. Low Mach number asymptotics for reacting compressible fluid flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 455-480. doi: 10.3934/dcds.2010.26.455

[10]

Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202

[11]

Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127

[12]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[13]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

[14]

Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305

[15]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[16]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[17]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[18]

Monica Conti, Vittorino Pata, M. Squassina. Singular limit of dissipative hyperbolic equations with memory. Conference Publications, 2005, 2005 (Special) : 200-208. doi: 10.3934/proc.2005.2005.200

[19]

José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873

[20]

Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (61)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]