\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider the haptotaxis system

    $ \begin{eqnarray*} \left\{ \begin{array}{lcl} u_t & = & \Delta u - \nabla \cdot (u\nabla v), \\ v_t & = & - (u+w)v, \\ w_t & = & D_w \Delta w - w + uz, \\ z_t & = & D_z \Delta z - z - uz + \beta w, \end{array} \right. \end{eqnarray*} $

    which arises as a simplified version of a recently proposed model for oncolytic virotherapy. When posed under no-flux boundary conditions in a smoothly bounded domain $ \Omega\subset \mathbb{R}^2 $, with positive parameters $ D_w $, $ D_z $ and $ \beta $, and along with initial conditions involving suitably regular data, this system is known to admit global classical solutions.

    It is shown that with respect to infinite-time blow-up, this system exhibits a critical mass phenomenon related to the quantity $ m_c: = \frac{1}{(\beta-1)_+} $: In fact, it is seen that each solution fulfilling $ \frac{1}{|\Omega|} \int_\Omega u(\cdot,0) > m_c $ must be unbounded, and this is complemented by a boundedness result which inter alia asserts that for any choice of $ m<m_c $ one can find a nontrivial set of solutions, particularly containing spatially heterogeneous solutions, each of which is bounded though satisfying $ \frac{1}{|\Omega|} \int_\Omega u(\cdot,0) = m $.

    Mathematics Subject Classification: Primary: 35B44, 35K57, 35Q92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. AlzahraniR. Raluca Eftimie and D. Dumitru Trucu, Multiscale modelling of cancer response to oncolytic viral therapy, Math. Biosci., 310 (2019), 76-95.  doi: 10.1016/j.mbs.2018.12.018.
    [2] X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis system, Z. Angew. Math. Phys., 67 (2016), Art. 11, 13pp. doi: 10.1007/s00033-015-0601-3.
    [3] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.
    [4] L. CorriasB. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Math. Acad. Sci. Paris, 336 (2003), 141-146.  doi: 10.1016/S1631-073X(02)00008-0.
    [5] C. EngwerA. Hunt and C. Surulescu, Effective equations for anisotropic glioma spread with proliferation: a multiscale approach and comparisons with previous settings, Math. Med. Biol., 33 (2016), 435-459.  doi: 10.1093/imammb/dqv030.
    [6] M. A. FontelosA. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.  doi: 10.1137/S0036141001385046.
    [7] A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.  doi: 10.1016/S0022-247X(02)00147-6.
    [8] T. HillenK. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Mod. Meth. Appl. Sci., 23 (2013), 165-198.  doi: 10.1142/S0218202512500480.
    [9] H. A. LevineB. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42 (2001), 195-238.  doi: 10.1007/s002850000037.
    [10] Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564-1595.  doi: 10.1088/0951-7715/29/5/1564.
    [11] G. Liţcanu and C. Morales-Rodrigo, Asymptotic behavior of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), 1721-1758.  doi: 10.1142/S0218202510004775.
    [12] A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Math. Models Methods Appl. Sci., 20 (2010), 449-476.  doi: 10.1142/S0218202510004301.
    [13] C. Morales-Rodrigo and J. I. Tello, Global existence and asymptotic behavior of a tumor angiogenesis model with chemotaxis and haptotaxis, Math. Models Methods Appl. Sci., 24 (2014), 427-464.  doi: 10.1142/S0218202513500553.
    [14] P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Mod. Meth. Appl. Sci., 28 (2018), 2211-2235.  doi: 10.1142/S0218202518400134.
    [15] C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.
    [16] Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60-69.  doi: 10.1016/j.jmaa.2008.12.039.
    [17] Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558.  doi: 10.1137/090751542.
    [18] Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model., Nonlinearity, 27 (2014), 1225-1239.  doi: 10.1088/0951-7715/27/6/1225.
    [19] Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.
    [20] Y. Tao and M. Winkler, Large time behavior in a mutidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.  doi: 10.1137/15M1014115.
    [21] Y. Tao and M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18 (2019), 2047-2067.  doi: 10.3934/cpaa.2019092.
    [22] Y. Tao and M. Winkler, Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy, J. Differential Equations, 268 (2020), 4973-4997.  doi: 10.1016/j.jde.2019.10.046.
    [23] Y. Tao and M. Winkler, A critical virus production rate for blow-up suppression in a haptotatxis model for oncolytic virotherapy, Nonlinear Anal., 198 (2020), 111870. doi: 10.1016/j.na.2020.111870.
    [24] C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.  doi: 10.1137/060655122.
    [25] Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.
    [26] M. Winkler and C. Surulescu, A global weak solutions to a strongly degenerate haptotaxis model, Commun. Math. Sci., 15 (2017), 1581-1616.  doi: 10.4310/CMS.2017.v15.n6.a5.
    [27] M. Winkler, Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, J. Math. Pures Appl., 112 (2018), 118-169.  doi: 10.1016/j.matpur.2017.11.002.
    [28] A. ZhigunC. Surulescu and A. Hunt, A strongly degenerate diffusion-haptotaxis model of tumour invasion under the go-or-grow dichotomy hypothesis, Math. Methods Appl. Sci., 41 (2018), 2403-2428.  doi: 10.1002/mma.4749.
    [29] A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys., 67 (2016), Art. 146, 29pp. doi: 10.1007/s00033-016-0741-0.
  • 加载中
SHARE

Article Metrics

HTML views(2957) PDF downloads(534) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return