October  2020, 40(10): 5765-5793. doi: 10.3934/dcds.2020245

On the effects of firing memory in the dynamics of conjunctive networks

1. 

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal las Torres 2650, Peñalolen, Santiago, Chile, and, Unconventional Computing Laboratory, University of the West of England, Bristol, UK

2. 

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal las Torres 2650, Peñalolen, Santiago, Chile

3. 

Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 851, Torre Norte, Piso 5, Santiago, Chile, and, Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

* Corresponding author: Pedro Montealegre

Some of the results of this paper have been presented in the 25th International Workshop on Cellular Automata and Discrete Complex Systems AUTOMATA 2019.

Received  July 2019 Revised  February 2020 Published  June 2020

A boolean network is a map $ F:\{0,1\}^n \to \{0,1\}^n $ that defines a discrete dynamical system by the subsequent iterations of $ F $. Nevertheless, it is thought that this definition is not always reliable in the context of applications, especially in biology. Concerning this issue, models based in the concept of adding asynchronicity to the dynamics were propose. Particularly, we are interested in a approach based in the concept of delay. We focus in a specific type of delay called firing memory and it effects in the dynamics of symmetric (non-directed) conjunctive networks. We find, in the caseis in which the implementation of the delay is not uniform, that all the complexity of the dynamics is somehow encapsulated in the component in which the delay has effect. Thus, we show, in the homogeneous case, that it is possible to exhibit attractors of non-polynomial period. In addition, we study the prediction problem consisting in, given an initial condition, determinate if a fixed coordinate will eventually change its state. We find again that in the non-homogeneous case all the complexity is determined by the component that is affected by the delay and we conclude in the homogeneous case that this problem is PSPACE-complete.

Citation: Eric Goles, Pedro Montealegre, Martín Ríos-Wilson. On the effects of firing memory in the dynamics of conjunctive networks. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5765-5793. doi: 10.3934/dcds.2020245
References:
[1]

J. AhmadO. RouxG. BernotJ.-P. Comet and A. Richard, Analysing formal models of genetic regulatory networks with delays, International Journal of Bioinformatics Research and Applications, 4 (2008), 240-262.  doi: 10.1504/IJBRA.2008.019573.  Google Scholar

[2]

J. AracenaE. GolesA. Moreira and L. Salinas, On the robustness of update schedules in Boolean networks, Biosystems, 97 (2009), 1-8.  doi: 10.1016/j.biosystems.2009.03.006.  Google Scholar

[3]

J. AracenaA. Richard and L. Salinas, Fixed points in conjunctive networks and maximal independent sets in graph contractions, J. Comput. System Sci., 88 (2017), 145-163.  doi: 10.1016/j.jcss.2017.03.016.  Google Scholar

[4] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511804090.  Google Scholar
[5]

G. BernotJ.-P. CometA. Richard and J. Guespin, Application of formal methods to biological regulatory networks: Extending Thomas' asynchronous logical approach with temporal logic, J. Theoret. Biol., 229 (2004), 339-347.  doi: 10.1016/j.jtbi.2004.04.003.  Google Scholar

[6]

J. DemongeotA. Elena and S. Sené, Robustness in regulatory networks: A multi-disciplinary approach, Acta Biotheoretica, 56 (2008), 27-49.  doi: 10.1007/s10441-008-9029-x.  Google Scholar

[7]

J. Fromentin, D. Eveillard and O. Roux, Hybrid modeling of biological networks: Mixing temporal and qualitative biological properties, BMC Systems Biology, 4 (2010), 79. doi: 10.1186/1752-0509-4-79.  Google Scholar

[8]

Z. GaoX. Chen and T. BaÅŸar, Controllability of conjunctive Boolean networks with application to gene regulation, IEEE Trans. Control Netw. Syst., 5 (2018), 770-781.  doi: 10.1109/TCNS.2017.2746345.  Google Scholar

[9]

E. GolesF. LobosG. A. Ruz and S. Sené, Attractor landscapes in Boolean networks with firing memory: A theoretical study applied to genetic networks, Nat. Comput., 19 (2020), 295-319.  doi: 10.1007/s11047-020-09789-0.  Google Scholar

[10]

E. Goles and P. Montealegre, Computational complexity of threshold automata networks under different updating schemes, Theoret. Comput. Sci., 559 (2014), 3-19.  doi: 10.1016/j.tcs.2014.09.010.  Google Scholar

[11]

E. GolesP. MontealegreV. Salo and I. Törmä, PSPACE-completeness of majority automata networks, Theoret. Comput. Sci., 609 (2016), 118-128.  doi: 10.1016/j.tcs.2015.09.014.  Google Scholar

[12]

E. Goles and M. Noual, Disjunctive networks and update schedules, Adv. in Appl. Math., 48 (2012), 646-662.  doi: 10.1016/j.aam.2011.11.009.  Google Scholar

[13]

E. Goles and L. Salinas, Comparison between parallel and serial dynamics of Boolean networks, Theoret. Comput. Sci., 396 (2008), 247-253.  doi: 10.1016/j.tcs.2007.09.008.  Google Scholar

[14]

E. Goles-ChaccF. Fogelman-Soulié and D. Pellegrin, Decreasing energy functions as a tool for studying threshold networks, Discrete Appl. Math., 12 (1985), 261-277.  doi: 10.1016/0166-218X(85)90029-0.  Google Scholar

[15]

A. Graudenzi and R. Serra, A new model of genetic network: The Gene Protein Boolean network, Artificial Life and Evolutionary Computation, World Sci. Publ., Hackensack, NJ, (2010), 283-291. doi: 10.1142/9789814287456_0025.  Google Scholar

[16]

A. GraudenziR. SerraM. VillaniA. Colacci and S. A. Kauffman, Robustness analysis of a Boolean model of gene regulatory network with memory, J. Comput. Biol., 18 (2011), 559-577.  doi: 10.1089/cmb.2010.0224.  Google Scholar

[17]

A. GraudenziR. SerraM. VillaniC. DamianiA. Colacci and S. A. Kauffman, Dynamical properties of a Boolean model of gene regulatory network with memory, J. Comput. Biol., 18 (2011), 1291-1303.  doi: 10.1089/cmb.2010.0069.  Google Scholar

[18]

B. M. GummowJ. O. ScheysV. R. Cancelli and G. D. Hammer, Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex, Molecular Endocrinology, 20 (2006), 2711-2723.   Google Scholar

[19] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.   Google Scholar
[20]

B. HostA. Maass and S. Martínez, Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules, Discrete Contin. Dyn. Syst., 9 (2003), 1423-1446.  doi: 10.3934/dcds.2003.9.1423.  Google Scholar

[21]

A. S. JarrahR. Laubenbacher and A. Veliz-Cuba, The dynamics of conjunctive and disjunctive Boolean network models, Bull. Math. Biol., 72 (2010), 1425-1447.  doi: 10.1007/s11538-010-9501-z.  Google Scholar

[22]

S. Kauffman, The large scale structure and dynamics of gene control circuits: An ensemble approach, Journal of Theoretical Biology, 44 (1974), 167-190.   Google Scholar

[23]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22 (1969), 437-467.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[24]

M. A. KiwiR. NdoundamM. Tchuente and E. Goles, No polynomial bound for the period of the parallel chip firing game on graphs, Theoret. Comput. Sci., 136 (1994), 527-532.  doi: 10.1016/0304-3975(94)00131-2.  Google Scholar

[25]

D. H. Nguyen and P. D'haeseleer, Deciphering principles of transcription regulation in eukaryotic genomes, Molecular Systems Biology, 2 (2006). doi: 10.1038/msb4100054.  Google Scholar

[26]

É. RemyP. Ruet and D. Thieffry, Positive or negative regulatory circuit inference from multilevel dynamics, Notes Control Inf. Sci., 341 (2006), 263-270.   Google Scholar

[27]

F. Ren and J. Cao, Asymptotic and robust stability of genetic regulatory networks with time-varying delays, Neurocomputing, 71 (2008), 834-842.  doi: 10.1016/j.neucom.2007.03.011.  Google Scholar

[28]

T. Ribeiro, M. Magnin, K. Inoue and C. Sakama, Learning delayed influences of biological systems, Frontiers in Bioengineering and Biotechnology, 2 (2015), 81. doi: 10.3389/fbioe.2014.00081.  Google Scholar

[29]

F. Robert, Discrete Iterations: A Metric Study, Springer Series in Computational Mathematics, 6. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61607-5.  Google Scholar

[30]

M. Sobottka, Right-permutative cellular automata on topological Markov chains, Discrete Contin. Dyn. Syst., 20 (2008), 1095-1109.  doi: 10.3934/dcds.2008.20.1095.  Google Scholar

[31]

T. K. Subrahmonian Moothathu, Homogeneity of surjective cellular automata, Discrete Contin. Dyn. Syst., 13 (2005), 195-202.  doi: 10.3934/dcds.2005.13.195.  Google Scholar

[32]

R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology, 42 (1973), 563-585.   Google Scholar

[33]

R. Thomas, Regulatory networks seen as asynchronous automata: A Logical description, Journal of Theoretical Biology, 153 (1991), 1-23.  doi: 10.1016/S0022-5193(05)80350-9.  Google Scholar

[34]

R. ThomasD. Thieffry and M. Kaufman, Dynamical behaviour of biological regulatory networks-i. biological role of feedback loops and practical use of the concept of the loop-characteristic state, Bulletin of Mathematical Biology, 57 (1995), 247-276.   Google Scholar

show all references

References:
[1]

J. AhmadO. RouxG. BernotJ.-P. Comet and A. Richard, Analysing formal models of genetic regulatory networks with delays, International Journal of Bioinformatics Research and Applications, 4 (2008), 240-262.  doi: 10.1504/IJBRA.2008.019573.  Google Scholar

[2]

J. AracenaE. GolesA. Moreira and L. Salinas, On the robustness of update schedules in Boolean networks, Biosystems, 97 (2009), 1-8.  doi: 10.1016/j.biosystems.2009.03.006.  Google Scholar

[3]

J. AracenaA. Richard and L. Salinas, Fixed points in conjunctive networks and maximal independent sets in graph contractions, J. Comput. System Sci., 88 (2017), 145-163.  doi: 10.1016/j.jcss.2017.03.016.  Google Scholar

[4] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511804090.  Google Scholar
[5]

G. BernotJ.-P. CometA. Richard and J. Guespin, Application of formal methods to biological regulatory networks: Extending Thomas' asynchronous logical approach with temporal logic, J. Theoret. Biol., 229 (2004), 339-347.  doi: 10.1016/j.jtbi.2004.04.003.  Google Scholar

[6]

J. DemongeotA. Elena and S. Sené, Robustness in regulatory networks: A multi-disciplinary approach, Acta Biotheoretica, 56 (2008), 27-49.  doi: 10.1007/s10441-008-9029-x.  Google Scholar

[7]

J. Fromentin, D. Eveillard and O. Roux, Hybrid modeling of biological networks: Mixing temporal and qualitative biological properties, BMC Systems Biology, 4 (2010), 79. doi: 10.1186/1752-0509-4-79.  Google Scholar

[8]

Z. GaoX. Chen and T. BaÅŸar, Controllability of conjunctive Boolean networks with application to gene regulation, IEEE Trans. Control Netw. Syst., 5 (2018), 770-781.  doi: 10.1109/TCNS.2017.2746345.  Google Scholar

[9]

E. GolesF. LobosG. A. Ruz and S. Sené, Attractor landscapes in Boolean networks with firing memory: A theoretical study applied to genetic networks, Nat. Comput., 19 (2020), 295-319.  doi: 10.1007/s11047-020-09789-0.  Google Scholar

[10]

E. Goles and P. Montealegre, Computational complexity of threshold automata networks under different updating schemes, Theoret. Comput. Sci., 559 (2014), 3-19.  doi: 10.1016/j.tcs.2014.09.010.  Google Scholar

[11]

E. GolesP. MontealegreV. Salo and I. Törmä, PSPACE-completeness of majority automata networks, Theoret. Comput. Sci., 609 (2016), 118-128.  doi: 10.1016/j.tcs.2015.09.014.  Google Scholar

[12]

E. Goles and M. Noual, Disjunctive networks and update schedules, Adv. in Appl. Math., 48 (2012), 646-662.  doi: 10.1016/j.aam.2011.11.009.  Google Scholar

[13]

E. Goles and L. Salinas, Comparison between parallel and serial dynamics of Boolean networks, Theoret. Comput. Sci., 396 (2008), 247-253.  doi: 10.1016/j.tcs.2007.09.008.  Google Scholar

[14]

E. Goles-ChaccF. Fogelman-Soulié and D. Pellegrin, Decreasing energy functions as a tool for studying threshold networks, Discrete Appl. Math., 12 (1985), 261-277.  doi: 10.1016/0166-218X(85)90029-0.  Google Scholar

[15]

A. Graudenzi and R. Serra, A new model of genetic network: The Gene Protein Boolean network, Artificial Life and Evolutionary Computation, World Sci. Publ., Hackensack, NJ, (2010), 283-291. doi: 10.1142/9789814287456_0025.  Google Scholar

[16]

A. GraudenziR. SerraM. VillaniA. Colacci and S. A. Kauffman, Robustness analysis of a Boolean model of gene regulatory network with memory, J. Comput. Biol., 18 (2011), 559-577.  doi: 10.1089/cmb.2010.0224.  Google Scholar

[17]

A. GraudenziR. SerraM. VillaniC. DamianiA. Colacci and S. A. Kauffman, Dynamical properties of a Boolean model of gene regulatory network with memory, J. Comput. Biol., 18 (2011), 1291-1303.  doi: 10.1089/cmb.2010.0069.  Google Scholar

[18]

B. M. GummowJ. O. ScheysV. R. Cancelli and G. D. Hammer, Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex, Molecular Endocrinology, 20 (2006), 2711-2723.   Google Scholar

[19] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.   Google Scholar
[20]

B. HostA. Maass and S. Martínez, Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules, Discrete Contin. Dyn. Syst., 9 (2003), 1423-1446.  doi: 10.3934/dcds.2003.9.1423.  Google Scholar

[21]

A. S. JarrahR. Laubenbacher and A. Veliz-Cuba, The dynamics of conjunctive and disjunctive Boolean network models, Bull. Math. Biol., 72 (2010), 1425-1447.  doi: 10.1007/s11538-010-9501-z.  Google Scholar

[22]

S. Kauffman, The large scale structure and dynamics of gene control circuits: An ensemble approach, Journal of Theoretical Biology, 44 (1974), 167-190.   Google Scholar

[23]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22 (1969), 437-467.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[24]

M. A. KiwiR. NdoundamM. Tchuente and E. Goles, No polynomial bound for the period of the parallel chip firing game on graphs, Theoret. Comput. Sci., 136 (1994), 527-532.  doi: 10.1016/0304-3975(94)00131-2.  Google Scholar

[25]

D. H. Nguyen and P. D'haeseleer, Deciphering principles of transcription regulation in eukaryotic genomes, Molecular Systems Biology, 2 (2006). doi: 10.1038/msb4100054.  Google Scholar

[26]

É. RemyP. Ruet and D. Thieffry, Positive or negative regulatory circuit inference from multilevel dynamics, Notes Control Inf. Sci., 341 (2006), 263-270.   Google Scholar

[27]

F. Ren and J. Cao, Asymptotic and robust stability of genetic regulatory networks with time-varying delays, Neurocomputing, 71 (2008), 834-842.  doi: 10.1016/j.neucom.2007.03.011.  Google Scholar

[28]

T. Ribeiro, M. Magnin, K. Inoue and C. Sakama, Learning delayed influences of biological systems, Frontiers in Bioengineering and Biotechnology, 2 (2015), 81. doi: 10.3389/fbioe.2014.00081.  Google Scholar

[29]

F. Robert, Discrete Iterations: A Metric Study, Springer Series in Computational Mathematics, 6. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61607-5.  Google Scholar

[30]

M. Sobottka, Right-permutative cellular automata on topological Markov chains, Discrete Contin. Dyn. Syst., 20 (2008), 1095-1109.  doi: 10.3934/dcds.2008.20.1095.  Google Scholar

[31]

T. K. Subrahmonian Moothathu, Homogeneity of surjective cellular automata, Discrete Contin. Dyn. Syst., 13 (2005), 195-202.  doi: 10.3934/dcds.2005.13.195.  Google Scholar

[32]

R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology, 42 (1973), 563-585.   Google Scholar

[33]

R. Thomas, Regulatory networks seen as asynchronous automata: A Logical description, Journal of Theoretical Biology, 153 (1991), 1-23.  doi: 10.1016/S0022-5193(05)80350-9.  Google Scholar

[34]

R. ThomasD. Thieffry and M. Kaufman, Dynamical behaviour of biological regulatory networks-i. biological role of feedback loops and practical use of the concept of the loop-characteristic state, Bulletin of Mathematical Biology, 57 (1995), 247-276.   Google Scholar

Figure 1.  Symmetric conjunctive network ($ F(x_0,x_1,x_2) = (x_1\land x_2, x_0\land x_2, x_0 \land x_1) $) dynamics in three vertices
Figure 2.  Symmetric AND ($ F(x_0,x_1,x_2) = (x_1\land x_2, x_0\land x_2, x_0 \land x_1) $) dynamics with firing memory $ dt_i = 2, \text{ } i = 0,1,2 $ in three vertices
Figure 3.  Structure of a network $ G^{\tau,k} $ in which the connected component $ D $ has maximum delay $ \tau \geq 2 $ in every node and the connected component $ G $ has maximum delay $ \tau = 1 $ in every node. Additionally, the subset $ \partial $ contains every node in $ D $ whose have a neighbour in $ G $. (a).- The connected component $ G $ has an arbiratry topology. (b).- The connected component $ G $ is a bipartite graph. As it is shown in Proposition 1, the structure of $ G $ may condition the existance of different type of attractors for a conjunctive network
Figure 4.  A scheme of the dynamics of a node $i \in \partial $ that is in state 0 in some time step t. Note that before the sequence of states Ï„; Ï„ âˆ' 1;...; 0 we don’t know the state of i and we note it as? in order to illustrate this situation. As a consequence of the fact that the maximum delay Ï„ is even together with the fact that two nodes in state 0 can not be neighbours we have that there are no attractor different from the fixed points $\overrightarrow 1 $ and $\overrightarrow 0 $.
Figure 5.  (a) A network $ G^{\tau,k} $ with maximum delay $ \tau = 3 $ and $ 10 $ nodes exhibiting an attractor of period $ 8 $. This network is defined by connecting the network $ D $ (squares and non-colored circles) to a component with maximum delay $ \tau = 1 $ in every vertex (gray nodes). The nodes $ 1 $ and $ 2 $ (in grey) are the only nodes in $ G^{\tau,k} $ with maximum delay $ \tau = 1 $. In addition, nodes represented by squares and non-coloured circles have maximum delay $ \tau = 3 $. Finally, nodes represented by squares are the nodes in the interface between the component $ D $ and $ G $ (we called this set $ \partial $ in the latter section), and nodes represented by non-coloured circles are the ones that have no neighbours in $ G $. (b) Configuration of an attractor with period $ 8 $ defined over the network showed in (a)
Figure 6.  Attractors with period $ p = \tau +1 $ for $ \tau = 2 $ and $ \tau = 3 $
Figure 7.  Structure of the $ j $-th block used in Proposition 5 to define a conjunctive network with firing memory and maximum delay values $ dt_i = \tau $ for every node $ i $ that admits attractors with period $ k(\tau+1) $. Every circle in the figure represents clock $ C(B_j)_{r,l} $ associated to a node $ r $ represented by a square. This gadget has $ \tau + 1 $ nodes and every node has $ \tau -1 $ clocks
Figure 8.  Initial condition for the j-th block, j ≥ 2 used in Proposition 5 to define an attractor with period k(Ï„ + 1): For the first block we just define the state of the first node to 0 instead of Ï„.
Figure 9.  Interaction graph G associated to a conjunctive network with firing memory and maximum delay dti = Ï„ for all $i \in V\left( G \right)$, defined in Proposition 5 that admits attractors with length k(Ï„ + 1).
Figure 10.  Structure of a block used in Proposition 5 to define a conjunctive network with firing memory and maximum delay values $ dt_i = \tau $ for every node $ i $ that admits attractors with period $ k(\tau+1) $. Every circle in the figure represents clock associated to a node $ r $ represented by a square. This gadget has $ \tau + 1 $ nodes and every node has $ \tau -1 $ clocks
Figure 11.  Interaction graph $ G $ associated to a conjunctive network with firing memory and maximum delay values $ dt_i = \tau $ for every node $ i \in V(G) $ that admits attractors with non polynomial period. Every component defines a local dynamics with period $ (\tau + 1) p_i $. Initial condition is defined verifying that there are no connected nodes in $ 0 $. Global period of the network is given by the product of prime numbers $ p_i $.
Figure 12.  Interaction graph associated to a conjunctive network with firing memory and maximum delay vector $ dt_i = 2 $ for every node $ i $ that simulates an iterated monotone boolean circuit $ C $. Layers are made up by AND or OR gates exclusively, using the gadgets shown in Figure 13 and Figure 14 are alternately ordered
Figure 13.  Gadget of AND gates used in the graph shown in Figure 12. Signals are transmitted and coded based on the block gadget
Figure 14.  Gadget of OR gates used in the graph shown in Figure 12. Signals are transmitted and coded based on the block gadget
Figure 15.  Iterations of the AND gate gadget. A $ 0 $ and a $ 1 $ are computed as inputs. After seven steps the information is transmitted and initial condition is recovered.
Figure 16.  Iterations of the OR gate gadget. A $ 0 $ and a $ 1 $ are computed as inputs. After three steps the information is transmitted and the initial condition is recovered.
[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[2]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[3]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[4]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[5]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[6]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[7]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[8]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[9]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[10]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[11]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[19]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (88)
  • Cited by (0)

[Back to Top]