# American Institute of Mathematical Sciences

December  2021, 41(12): 5537-5549. doi: 10.3934/dcds.2021087

## Hearing the shape of right triangle billiard tables

 School of Mathematical Sciences, Peking University, Beijing 100871, China

* Corresponding author: Jiazhong Yang

Received  December 2020 Revised  April 2021 Published  December 2021 Early access  May 2021

Fund Project: The paper is supported by NSFC-12071006

In this paper, we give a positive answer to the problem that whether one can identify the shape of a right triangle billiard table by a single bounce sequence. Moreover, a convenient method to calculate the shape of polygons is given in this paper, too.

Citation: Yang Shen, Jiazhong Yang. Hearing the shape of right triangle billiard tables. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5537-5549. doi: 10.3934/dcds.2021087
##### References:

show all references

##### References:
After a reflection, $P_{n}$ becomes $P_{n+1}$ in Case ($i$) and $P_{n-1}$ in Case ($ii$)
From $B(\gamma^+) = ({r}, {b}, {r}, {g}, {b}, {r}, {b}, {r}, {b}, {g}, {r}, \cdots)$ to get the return sequence $R(\gamma^+) = (1, 2, 1, 2, \cdots)$ and then to the get the level sequence $L(\gamma^+) = (0, 1, 0, -1, 0, \cdots)$
The visual diagram of $\theta_{n}$, $\theta_{n+1}$ and $\theta_{n+2}$
Cases ($i$) and ($ii$) correspond to $LM_n = ({r}, {g}, {r})$ and $\theta_{n}\in(\alpha, \pi-\alpha)$; Cases ($iii$) and ($iv$) correspond to $LM_n = ({r}, {b}, {r})$ and $\theta_{n}\in[0, \alpha)\bigcup\, (\pi-\alpha, \pi] = (-\alpha, \alpha)\, (\bmod\, \pi)$
In Case ($i$), $\theta_{n_0} = \pi-\alpha$. In Case ($ii$), $\theta_{n_0} = \alpha$
The left-hand part is a right triangle billiard table $Rt$ and a periodic orbit: $p_{0}$ $\longrightarrow$ $p_{1}$ $\longrightarrow$ $p_{2}$ $\longrightarrow$ $\cdots$ $\longrightarrow p_{9}$ $\longrightarrow$ $p_{10}$ $\longrightarrow$ $\cdots$ in $Rt$. The right-hand part is the unfolding floors of the corresponding rhombus of $Rt$ along the periodic orbit
The left-hand part is a right triangle billiard table $Rt$ and a periodic orbit: $p_{0}$ $\longrightarrow$ $p_{1}$ $\longrightarrow$ $p_{2}$ $\longrightarrow$ $\cdots$ $\longrightarrow$ $p_{6}$ $\longrightarrow$ $\cdots$ in $Rt$. The right-hand part is the unfolding floors of the corresponding rhombus of $Rt$ along the periodic orbit
 [1] Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117 [2] Zhe Zhang, Jiuping Xu. Bi-level multiple mode resource-constrained project scheduling problems under hybrid uncertainty. Journal of Industrial & Management Optimization, 2016, 12 (2) : 565-593. doi: 10.3934/jimo.2016.12.565 [3] Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015 [4] Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018 [5] Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial & Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451 [6] Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417 [7] Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237 [8] Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135 [9] Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533 [10] Wenjun Xia, Jinzhi Lei. Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences & Engineering, 2018, 15 (2) : 507-522. doi: 10.3934/mbe.2018023 [11] Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3017-3025. doi: 10.3934/dcdss.2020465 [12] Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115 [13] Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375 [14] Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517 [15] Francisco Sánchez-Sánchez, Miguel Vargas-Valencia. Games with nested constraints given by a level structure. Journal of Dynamics & Games, 2018, 5 (2) : 95-107. doi: 10.3934/jdg.2018007 [16] Jun Wu, Shouyang Wang, Wuyi Yue. Supply contract model with service level constraint. Journal of Industrial & Management Optimization, 2005, 1 (3) : 275-287. doi: 10.3934/jimo.2005.1.275 [17] David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335 [18] Marina Dolfin, Mirosław Lachowicz. Modeling DNA thermal denaturation at the mesoscopic level. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2469-2482. doi: 10.3934/dcdsb.2014.19.2469 [19] Alexander Zeh, Antonia Wachter. Fast multi-sequence shift-register synthesis with the Euclidean algorithm. Advances in Mathematics of Communications, 2011, 5 (4) : 667-680. doi: 10.3934/amc.2011.5.667 [20] Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

2020 Impact Factor: 1.392