# American Institute of Mathematical Sciences

December  2021, 41(12): 5659-5705. doi: 10.3934/dcds.2021092

## The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results

 Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12, 60131 Ancona, Italy

Received  December 2020 Revised  April 2021 Published  December 2021 Early access  June 2021

In this paper we study the following class of fractional relativistic Schrödinger equations:
 $\begin{equation*} \left\{ \begin{array}{ll} (-\Delta+m^{2})^{s}u + V(\varepsilon x) u = f(u) &\text{ in } \mathbb{R}^{N}, \\ u\in H^{s}( \mathbb{R}^{N}), \quad u>0 &\text{ in } \mathbb{R}^{N}, \end{array} \right. \end{equation*}$
where
 $\varepsilon >0$
is a small parameter,
 $s\in (0, 1)$
,
 $m>0$
,
 $N> 2s$
,
 $(-\Delta+m^{2})^{s}$
is the fractional relativistic Schrödinger operator,
 $V: \mathbb{R}^{N} \rightarrow \mathbb{R}$
is a continuous potential satisfying a local condition, and
 $f: \mathbb{R} \rightarrow \mathbb{R}$
is a continuous subcritical nonlinearity. By using a variant of the extension method and a penalization technique, we first prove that, for
 $\varepsilon >0$
small enough, the above problem admits a weak solution
 $u_{\varepsilon }$
which concentrates around a local minimum point of
 $V$
as
 $\varepsilon \rightarrow 0$
. We also show that
 $u_{\varepsilon }$
has an exponential decay at infinity by constructing a suitable comparison function and by performing some refined estimates. Secondly, by combining the generalized Nehari manifold method and Ljusternik-Schnirelman theory, we relate the number of positive solutions with the topology of the set where the potential
 $V$
attains its minimum value.
Citation: Vincenzo Ambrosio. The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5659-5705. doi: 10.3934/dcds.2021092
##### References:
 [1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65 Academic Press, New York-London, 1975.  Google Scholar [2] C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^{N}$ via penalization method, Calc. Var. Partial Differential Equations, 55 (2016), art. 47, 19 pp. doi: 10.1007/s00526-016-0983-x.  Google Scholar [3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar [4] V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502, 18 pp. doi: 10.1063/1.4949352.  Google Scholar [5] V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl. (4), 196 (2017), 2043-2062.  doi: 10.1007/s10231-017-0652-5.  Google Scholar [6] V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in $\mathbb{R}^{N}$, Rev. Mat. Iberoam., 35 (2019), 1367-1414.  doi: 10.4171/rmi/1086.  Google Scholar [7] V. Ambrosio, Concentration phenomena for a class of fractional Kirchhoff equations in $\mathbb{R}^{N}$ with general nonlinearities, Nonlinear Anal., 195 (2020), 111761, 39 pp. doi: 10.1016/j.na.2020.111761.  Google Scholar [8] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble), 11 (1961), 385-475.  doi: 10.5802/aif.116.  Google Scholar [9] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer, Unione Matematica Italiana, Bologna, 2016. xii+155 pp. doi: 10.1007/978-3-319-28739-3.  Google Scholar [10] H. Bueno, O. H. Miyagaki and G. A. Pereira, Remarks about a generalized pseudo-relativistic Hartree equation, J. Differential Equations, 266 (2019), 876-909.  doi: 10.1016/j.jde.2018.07.058.  Google Scholar [11] T. Byczkowski, J. Malecki and M. Ryznar, Bessel potentials, hitting distributions and Green functions, Trans. Amer. Math. Soc., 361 (2009), 4871-4900.  doi: 10.1090/S0002-9947-09-04657-1.  Google Scholar [12] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [13] A.-P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., American Mathematical Society, Providence, R.I., 4 (1961), 33-49.   Google Scholar [14] R. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions, J. Func. Anal., 91 (1990), 117-142.  doi: 10.1016/0022-1236(90)90049-Q.  Google Scholar [15] S. Cingolani and S. Secchi, Semiclassical analysis for pseudo-relativistic Hartree equations, J. Differential Equations, 258 (2015), 4156-4179.  doi: 10.1016/j.jde.2015.01.029.  Google Scholar [16] V. Coti Zelati and M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011), 51-72.  doi: 10.4171/RLM/587.  Google Scholar [17] V. Coti Zelati and M. Nolasco, Ground states for pseudo-relativistic Hartree equations of critical type, Rev. Mat. Iberoam., 29 (2013), 1421-1436.  doi: 10.4171/RMI/763.  Google Scholar [18] J. Dávila, M. del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235.  doi: 10.2140/apde.2015.8.1165.  Google Scholar [19] J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar [20] M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar [21] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar [22] S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^{n}$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar [23] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. II, Based on notes left by Harry Bateman. Reprint of the 1953 original. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.  Google Scholar [24] E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.  doi: 10.1080/03605308208820218.  Google Scholar [25] M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827-5867.  doi: 10.3934/dcds.2015.35.5827.  Google Scholar [26] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar [27] P. Felmer and I. Vergara, Scalar field equation with non-local diffusion, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1411-1428.  doi: 10.1007/s00030-015-0328-z.  Google Scholar [28] G. M. Figueiredo and J. R. Santos, Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method, ESAIM Control Optim. Calc. Var., 20 (2014), 389-415.  doi: 10.1051/cocv/2013068.  Google Scholar [29] G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in $\mathbb{R}^{N}$, NoDEA Nonlinear Differential Equations Appl., 23 (2016), art. 12, 22 pp. doi: 10.1007/s00030-016-0355-4.  Google Scholar [30] L. Grafakos, Modern Fourier analysis, Third edition. Graduate Texts in Mathematics, 250. Springer, New York, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar [31] T. Grzywny and M. Ryznar, Two-sided optimal bounds for Green functions of half-spaces for relativistic $\alpha$-stable process, Potential Anal., 28 (2008), 201-239.  doi: 10.1007/s11118-007-9071-3.  Google Scholar [32] I. W. Herbst, Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$, Comm. Math. Phys., 53 (1977), 285-294.   Google Scholar [33] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], 26. Springer-Verlag, Berlin, 1997.  Google Scholar [34] T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111-1171.  doi: 10.4171/JEMS/456.  Google Scholar [35] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 1997.  Google Scholar [36] E. H. Lieb and H. T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174.  doi: 10.1007/BF01217684.  Google Scholar [37] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar [38] G. Molica Bisci, V. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 162 Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar [39] J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457–468. doi: 10.1002/cpa.3160130308.  Google Scholar [40] D. Mugnai, Pseudorelativistic Hartree equation with general nonlinearity: existence, non-existence and variational identities, Adv. Nonlinear Stud., 13 (2013), 799-823.  doi: 10.1515/ans-2013-0403.  Google Scholar [41] M. Ryznar, Estimate of Green function for relativistic $\alpha$-stable processes, Potential Analysis, 17 (2002), 1-23.  doi: 10.1023/A:1015231913916.  Google Scholar [42] S. Secchi, On some nonlinear fractional equations involving the Bessel potential, J. Dynam. Differential Equations, 29 (2017), 1173-1193.  doi: 10.1007/s10884-016-9521-y.  Google Scholar [43] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar [44] P. R. Stinga, User's guide to the fractional Laplacian and the method of semigroups, Handbook of Fractional Calculus with Applications, De Gruyter, Berlin, 2 (2019), 235–265.  Google Scholar [45] P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar [46] A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010,597–632.  Google Scholar [47] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties, J. Math. Mech., 13 (1964), 407-479.   Google Scholar [48] R. A. Weder, Spectral properties of one-body relativistic spin-zero Hamiltonians, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 211-220.   Google Scholar [49] R. A. Weder, Spectral analysis of pseudodifferential operators, J. Functional Analysis, 20 (1975), 319-337.  doi: 10.1016/0022-1236(75)90038-5.  Google Scholar [50] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

##### References:
 [1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65 Academic Press, New York-London, 1975.  Google Scholar [2] C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^{N}$ via penalization method, Calc. Var. Partial Differential Equations, 55 (2016), art. 47, 19 pp. doi: 10.1007/s00526-016-0983-x.  Google Scholar [3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar [4] V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502, 18 pp. doi: 10.1063/1.4949352.  Google Scholar [5] V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl. (4), 196 (2017), 2043-2062.  doi: 10.1007/s10231-017-0652-5.  Google Scholar [6] V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in $\mathbb{R}^{N}$, Rev. Mat. Iberoam., 35 (2019), 1367-1414.  doi: 10.4171/rmi/1086.  Google Scholar [7] V. Ambrosio, Concentration phenomena for a class of fractional Kirchhoff equations in $\mathbb{R}^{N}$ with general nonlinearities, Nonlinear Anal., 195 (2020), 111761, 39 pp. doi: 10.1016/j.na.2020.111761.  Google Scholar [8] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble), 11 (1961), 385-475.  doi: 10.5802/aif.116.  Google Scholar [9] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer, Unione Matematica Italiana, Bologna, 2016. xii+155 pp. doi: 10.1007/978-3-319-28739-3.  Google Scholar [10] H. Bueno, O. H. Miyagaki and G. A. Pereira, Remarks about a generalized pseudo-relativistic Hartree equation, J. Differential Equations, 266 (2019), 876-909.  doi: 10.1016/j.jde.2018.07.058.  Google Scholar [11] T. Byczkowski, J. Malecki and M. Ryznar, Bessel potentials, hitting distributions and Green functions, Trans. Amer. Math. Soc., 361 (2009), 4871-4900.  doi: 10.1090/S0002-9947-09-04657-1.  Google Scholar [12] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [13] A.-P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., American Mathematical Society, Providence, R.I., 4 (1961), 33-49.   Google Scholar [14] R. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions, J. Func. Anal., 91 (1990), 117-142.  doi: 10.1016/0022-1236(90)90049-Q.  Google Scholar [15] S. Cingolani and S. Secchi, Semiclassical analysis for pseudo-relativistic Hartree equations, J. Differential Equations, 258 (2015), 4156-4179.  doi: 10.1016/j.jde.2015.01.029.  Google Scholar [16] V. Coti Zelati and M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011), 51-72.  doi: 10.4171/RLM/587.  Google Scholar [17] V. Coti Zelati and M. Nolasco, Ground states for pseudo-relativistic Hartree equations of critical type, Rev. Mat. Iberoam., 29 (2013), 1421-1436.  doi: 10.4171/RMI/763.  Google Scholar [18] J. Dávila, M. del Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235.  doi: 10.2140/apde.2015.8.1165.  Google Scholar [19] J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar [20] M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar [21] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar [22] S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^{n}$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar [23] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. II, Based on notes left by Harry Bateman. Reprint of the 1953 original. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.  Google Scholar [24] E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.  doi: 10.1080/03605308208820218.  Google Scholar [25] M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827-5867.  doi: 10.3934/dcds.2015.35.5827.  Google Scholar [26] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar [27] P. Felmer and I. Vergara, Scalar field equation with non-local diffusion, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1411-1428.  doi: 10.1007/s00030-015-0328-z.  Google Scholar [28] G. M. Figueiredo and J. R. Santos, Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method, ESAIM Control Optim. Calc. Var., 20 (2014), 389-415.  doi: 10.1051/cocv/2013068.  Google Scholar [29] G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in $\mathbb{R}^{N}$, NoDEA Nonlinear Differential Equations Appl., 23 (2016), art. 12, 22 pp. doi: 10.1007/s00030-016-0355-4.  Google Scholar [30] L. Grafakos, Modern Fourier analysis, Third edition. Graduate Texts in Mathematics, 250. Springer, New York, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar [31] T. Grzywny and M. Ryznar, Two-sided optimal bounds for Green functions of half-spaces for relativistic $\alpha$-stable process, Potential Anal., 28 (2008), 201-239.  doi: 10.1007/s11118-007-9071-3.  Google Scholar [32] I. W. Herbst, Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$, Comm. Math. Phys., 53 (1977), 285-294.   Google Scholar [33] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], 26. Springer-Verlag, Berlin, 1997.  Google Scholar [34] T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111-1171.  doi: 10.4171/JEMS/456.  Google Scholar [35] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 1997.  Google Scholar [36] E. H. Lieb and H. T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174.  doi: 10.1007/BF01217684.  Google Scholar [37] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar [38] G. Molica Bisci, V. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 162 Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar [39] J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457–468. doi: 10.1002/cpa.3160130308.  Google Scholar [40] D. Mugnai, Pseudorelativistic Hartree equation with general nonlinearity: existence, non-existence and variational identities, Adv. Nonlinear Stud., 13 (2013), 799-823.  doi: 10.1515/ans-2013-0403.  Google Scholar [41] M. Ryznar, Estimate of Green function for relativistic $\alpha$-stable processes, Potential Analysis, 17 (2002), 1-23.  doi: 10.1023/A:1015231913916.  Google Scholar [42] S. Secchi, On some nonlinear fractional equations involving the Bessel potential, J. Dynam. Differential Equations, 29 (2017), 1173-1193.  doi: 10.1007/s10884-016-9521-y.  Google Scholar [43] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar [44] P. R. Stinga, User's guide to the fractional Laplacian and the method of semigroups, Handbook of Fractional Calculus with Applications, De Gruyter, Berlin, 2 (2019), 235–265.  Google Scholar [45] P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar [46] A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010,597–632.  Google Scholar [47] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties, J. Math. Mech., 13 (1964), 407-479.   Google Scholar [48] R. A. Weder, Spectral properties of one-body relativistic spin-zero Hamiltonians, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 211-220.   Google Scholar [49] R. A. Weder, Spectral analysis of pseudodifferential operators, J. Functional Analysis, 20 (1975), 319-337.  doi: 10.1016/0022-1236(75)90038-5.  Google Scholar [50] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar
 [1] Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 [2] Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022 [3] Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014 [4] Chenglin Wang, Jian Zhang. Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021036 [5] Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 [6] Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541 [7] Masoumeh Hosseininia, Mohammad Hossein Heydari, Carlo Cattani. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2273-2295. doi: 10.3934/dcdss.2020295 [8] Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 [9] Augusto Visintin. An extension of the Fitzpatrick theory. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2039-2058. doi: 10.3934/cpaa.2014.13.2039 [10] Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345 [11] Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013 [12] Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 [13] Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377 [14] Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933 [15] Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013 [16] Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 [17] Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001 [18] Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59 [19] Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055 [20] Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

2020 Impact Factor: 1.392