• Previous Article
    Extinction or coexistence in periodic Kolmogorov systems of competitive type
  • DCDS Home
  • This Issue
  • Next Article
    The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results
December  2021, 41(12): 5707-5742. doi: 10.3934/dcds.2021093

Dispersive estimates for the wave and the Klein-Gordon equations in large time inside the Friedlander domain

Sorbonne Université, CNRS, LJLL, F-75005 Paris, France

Received  January 2021 Revised  April 2021 Published  December 2021 Early access  June 2021

Fund Project: The author is supported by ERC grant ANADEL 757 996

We prove global in time dispersion for the wave and the Klein-Gordon equation inside the Friedlander domain by taking full advantage of the space-time localization of caustics and a precise estimate of the number of waves that may cross at a given, large time. Moreover, we uncover a significant difference between Klein-Gordon and the wave equation in the low frequency, large time regime, where Klein-Gordon exhibits a worse decay than the wave, unlike in the flat space.

Citation: Oana Ivanovici. Dispersive estimates for the wave and the Klein-Gordon equations in large time inside the Friedlander domain. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5707-5742. doi: 10.3934/dcds.2021093
References:
[1]

M. D. BlairH. F. Smith and Ch. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.  doi: 10.1016/j.anihpc.2008.12.004.  Google Scholar

[2]

G. Eskin, Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., 32 (1977), 17-62.  doi: 10.1007/BF02803574.  Google Scholar

[3]

O. Ivanovici, R. Lascar, G. Lebeau and F. Planchon., Dispersion for the wave equation inside strictly convex domains II: The general case, preprint, https://arXiv.org/abs/1605.08800. Google Scholar

[4]

O. Ivanovici, G. Lebeau and F. Planchon, Strichartz estimates for the wave equation inside strictly convex 2d model domain, preprint, https://arXiv.org/abs/2008.03598. Google Scholar

[5]

O. IvanoviciG. Lebeau and F. Planchon, Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. of Math. (2), 180 (2014), 323-380.  doi: 10.4007/annals.2014.180.1.7.  Google Scholar

[6]

O. Ivanovici, G. Lebeau and F. Planchon, New counterexamples to Strichartz estimates for the wave equation on a 2D model convex domain, to appear in J. Ec. polytech. Math., https://arXiv.org/abs/2008.02716. Google Scholar

[7]

J. Kato and T. Ozawa, Endpoint strichartz estimates for the Klein-Gordon equation in two space dimensions and some applications, J. Math. Pures Appl., 95 (2011), 48-71.  doi: 10.1016/j.matpur.2010.10.001.  Google Scholar

[8]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[9]

R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math., 37 (1976), 165-191.  doi: 10.1007/BF01390317.  Google Scholar

[10]

R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math., 31 (1978), 593-617.  doi: 10.1002/cpa.3160310504.  Google Scholar

[11]

R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II, Comm. Pure Appl. Math., 35 (1982), 129-168.  doi: 10.1002/cpa.3160350202.  Google Scholar

[12]

R. B. Melrose and M. E. Taylor, Boundary Problems for Wave Equations With Grazing and Gliding Rays, Available at https://www.unc.edu/math/Faculty/met/wavep.html. Google Scholar

[13]

R. B. Melrose and M. E. Taylor, The radiation pattern of a diffracted wave near the shadow boundary, Comm. Partial Differential Equations, 11 (1986), 599-672.  doi: 10.1080/03605308608820439.  Google Scholar

[14]

O. Vallée and M. Soares, Airy Functions and Applications to Physics, Imperial College Press, London; Distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. doi: 10.1142/p345.  Google Scholar

show all references

References:
[1]

M. D. BlairH. F. Smith and Ch. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.  doi: 10.1016/j.anihpc.2008.12.004.  Google Scholar

[2]

G. Eskin, Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., 32 (1977), 17-62.  doi: 10.1007/BF02803574.  Google Scholar

[3]

O. Ivanovici, R. Lascar, G. Lebeau and F. Planchon., Dispersion for the wave equation inside strictly convex domains II: The general case, preprint, https://arXiv.org/abs/1605.08800. Google Scholar

[4]

O. Ivanovici, G. Lebeau and F. Planchon, Strichartz estimates for the wave equation inside strictly convex 2d model domain, preprint, https://arXiv.org/abs/2008.03598. Google Scholar

[5]

O. IvanoviciG. Lebeau and F. Planchon, Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. of Math. (2), 180 (2014), 323-380.  doi: 10.4007/annals.2014.180.1.7.  Google Scholar

[6]

O. Ivanovici, G. Lebeau and F. Planchon, New counterexamples to Strichartz estimates for the wave equation on a 2D model convex domain, to appear in J. Ec. polytech. Math., https://arXiv.org/abs/2008.02716. Google Scholar

[7]

J. Kato and T. Ozawa, Endpoint strichartz estimates for the Klein-Gordon equation in two space dimensions and some applications, J. Math. Pures Appl., 95 (2011), 48-71.  doi: 10.1016/j.matpur.2010.10.001.  Google Scholar

[8]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[9]

R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math., 37 (1976), 165-191.  doi: 10.1007/BF01390317.  Google Scholar

[10]

R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math., 31 (1978), 593-617.  doi: 10.1002/cpa.3160310504.  Google Scholar

[11]

R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II, Comm. Pure Appl. Math., 35 (1982), 129-168.  doi: 10.1002/cpa.3160350202.  Google Scholar

[12]

R. B. Melrose and M. E. Taylor, Boundary Problems for Wave Equations With Grazing and Gliding Rays, Available at https://www.unc.edu/math/Faculty/met/wavep.html. Google Scholar

[13]

R. B. Melrose and M. E. Taylor, The radiation pattern of a diffracted wave near the shadow boundary, Comm. Partial Differential Equations, 11 (1986), 599-672.  doi: 10.1080/03605308608820439.  Google Scholar

[14]

O. Vallée and M. Soares, Airy Functions and Applications to Physics, Imperial College Press, London; Distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. doi: 10.1142/p345.  Google Scholar

[1]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[2]

P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029

[3]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[4]

Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370

[5]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[6]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[7]

Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279

[8]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations & Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005

[9]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[10]

Nakao Hayashi, Seishirou Kobayashi, Pavel I. Naumkin. Nonlinear dispersive wave equations in two space dimensions. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1377-1393. doi: 10.3934/cpaa.2015.14.1377

[11]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[12]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[13]

Michinori Ishiwata, Makoto Nakamura, Hidemitsu Wadade. Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4889-4903. doi: 10.3934/dcds.2015.35.4889

[14]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[15]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[16]

Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021152

[17]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

[18]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[19]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

[20]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (118)
  • HTML views (185)
  • Cited by (0)

Other articles
by authors

[Back to Top]