• Previous Article
    Global existence of solutions to reaction diffusion systems with mass transport type boundary conditions on an evolving domain
  • DCDS Home
  • This Issue
  • Next Article
    On the number of positive solutions to an indefinite parameter-dependent Neumann problem
January  2022, 42(1): 73-108. doi: 10.3934/dcds.2021108

Upper semicontinuity of pullback attractors for non-autonomous lattice systems under singular perturbations

College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, 321004, China

* Corresponding author: Shengfan Zhou

Received  November 2020 Revised  March 2021 Published  January 2022 Early access  August 2021

Fund Project: The second author is supported by the National Natural Science Foundation of China under Grant Nos. 11871437 and 11971356

Consider the second order nonautonomous lattice systemswith singular perturbations
$ \begin{equation*} \epsilon \ddot{u}_{m}+\dot{u}_{m}+(Au)_{m}+\lambda_{m}u_{m}+f_{m}(u_{j}|j\in I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k},\; \; \epsilon>0 \tag{*} \label{0} \end{equation*} $
and the first order nonautonomous lattice systems
$ \begin{equation*} \dot{u}_{m}+(Au)_{m}+\lambda _{m}u_{m}+f_{m}(u_{j}|j∈I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k}. \tag{**} \label{00} \end{equation*} $
Under certain conditions, there are pullback attractors
$ \{\mathcal{A}_{\epsilon }(t)\subset \ell ^{2}\times \ell ^{2}\}_{t\in \mathbb{R}} $
and
$ \{\mathcal{A}(t)\subset \ell ^{2}\}_{t\in \mathbb{R}} $
for systems (*)and (**), respectively. In this paper, we mainly consider the uppersemicontinuity of attractors
$ \mathcal{A}_{\epsilon }(t)\subset \ell^{2}\times \ell ^{2} $
,
$ t\in \mathbb{R} $
, with respect to the coefficient
$ \epsilon $
of second derivative term under Hausdorff semidistance. First, we studythe relationship between
$ \mathcal{A}_{\epsilon }(t) $
and
$ \mathcal{A}(t) $
when
$ \epsilon \rightarrow 0^{+} $
. We construct a family of compact sets
$ \mathcal{A}_{0}(t)\subset \ell ^{2}\times \ell ^{2} $
,
$ t\in \mathbb{R} $
such that
$ \mathcal{A}(t) $
is naturally embedded into
$ \mathcal{A}_{0}(t) $
as the firstcomponent, and prove that
$ \mathcal{A}_{\epsilon }(t) $
can enter anyneighborhood of
$ \mathcal{A}_{0}(t) $
when
$ \epsilon $
is small enough. Thenfor
$ \epsilon _{0}>0 $
, we prove that
$ \mathcal{A}_{\epsilon }(t) $
can enterany neighborhood of
$ \mathcal{A}_{\epsilon _{0}}(t) $
when
$ \epsilon\rightarrow \epsilon _{0} $
. Finally, we consider the existence andexponentially attraction of the singleton pullback attractors of systems (*)-(**).
Citation: Na Lei, Shengfan Zhou. Upper semicontinuity of pullback attractors for non-autonomous lattice systems under singular perturbations. Discrete & Continuous Dynamical Systems, 2022, 42 (1) : 73-108. doi: 10.3934/dcds.2021108
References:
[1]

A. Y. Abdallah and R. T. Wannan, Second order non-autonomous lattice systems and their uniform attractors, Commun. Pure Appl. Anal., 18 (2019), 1827-1846.  doi: 10.3934/cpaa.2019085.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[3]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar

[4]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002. doi: 10.1090/coll/049.  Google Scholar

[6]

M. M. FreitasP. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.  doi: 10.1016/j.jde.2017.10.007.  Google Scholar

[7]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractors for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[8]

B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[9]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[10]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with determinstic non-autonomous, Stoch. Dyn., 14 (2014), 1450009. doi: 10.1142/s0219493714500099.  Google Scholar

[11]

J. Wang and A. Gu, Existence of backwards-compact pullback attractors for non-autonomous lattice dynamical systems, J. Difference Equ. Appl., 22 (2016), 1906–1911. doi: 10.1080/10236198.2016.1254205.  Google Scholar

[12]

C. Zhao and S. Zhou, Upper semicontinuity of attractors for lattice systems under singularly perturbations, Nonlinear Anal., 72 (2010), 2149-2158.  doi: 10.1016/j.na.2009.09.001.  Google Scholar

[13]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 763-785.  doi: 10.3934/dcdsb.2008.9.763.  Google Scholar

[14]

S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.  doi: 10.1006/jdeq.2001.4032.  Google Scholar

[15]

S. Zhou, Attractors for first order disspative lattice dynamical systems, Phys. D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[16]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[17]

S. Zhou, Upper-semicontinuity of attractors for random lattice systems perturbed by small white noises, Nonlinear Anal., 75 (2012), 2793-2805.  doi: 10.1016/j.na.2011.11.022.  Google Scholar

[18]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah and R. T. Wannan, Second order non-autonomous lattice systems and their uniform attractors, Commun. Pure Appl. Anal., 18 (2019), 1827-1846.  doi: 10.3934/cpaa.2019085.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[3]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar

[4]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002. doi: 10.1090/coll/049.  Google Scholar

[6]

M. M. FreitasP. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.  doi: 10.1016/j.jde.2017.10.007.  Google Scholar

[7]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractors for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[8]

B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[9]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[10]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with determinstic non-autonomous, Stoch. Dyn., 14 (2014), 1450009. doi: 10.1142/s0219493714500099.  Google Scholar

[11]

J. Wang and A. Gu, Existence of backwards-compact pullback attractors for non-autonomous lattice dynamical systems, J. Difference Equ. Appl., 22 (2016), 1906–1911. doi: 10.1080/10236198.2016.1254205.  Google Scholar

[12]

C. Zhao and S. Zhou, Upper semicontinuity of attractors for lattice systems under singularly perturbations, Nonlinear Anal., 72 (2010), 2149-2158.  doi: 10.1016/j.na.2009.09.001.  Google Scholar

[13]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 763-785.  doi: 10.3934/dcdsb.2008.9.763.  Google Scholar

[14]

S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.  doi: 10.1006/jdeq.2001.4032.  Google Scholar

[15]

S. Zhou, Attractors for first order disspative lattice dynamical systems, Phys. D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[16]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[17]

S. Zhou, Upper-semicontinuity of attractors for random lattice systems perturbed by small white noises, Nonlinear Anal., 75 (2012), 2793-2805.  doi: 10.1016/j.na.2011.11.022.  Google Scholar

[18]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

[1]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[2]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[3]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[4]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

[5]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[6]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036

[7]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[8]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[9]

José A. Langa, Alain Miranville, José Real. Pullback exponential attractors. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1329-1357. doi: 10.3934/dcds.2010.26.1329

[10]

Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148

[11]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[12]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[13]

Christian Lax, Sebastian Walcher. Singular perturbations and scaling. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 1-29. doi: 10.3934/dcdsb.2019170

[14]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[15]

Xiao-Qiang Zhao, Shengfan Zhou. Kernel sections for processes and nonautonomous lattice systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 763-785. doi: 10.3934/dcdsb.2008.9.763

[16]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[17]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[18]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[19]

Mohamed Ali Hammami, Lassaad Mchiri, Sana Netchaoui, Stefanie Sonner. Pullback exponential attractors for differential equations with variable delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 301-319. doi: 10.3934/dcdsb.2019183

[20]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

2020 Impact Factor: 1.392

Article outline

[Back to Top]