January  2022, 42(1): 211-237. doi: 10.3934/dcds.2021113

The relaxation limit of bipolar fluid models

CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

* Corresponding author: Nuno J. Alves

Received  January 2021 Revised  June 2021 Published  January 2022 Early access  August 2021

This work establishes the relaxation limit from the bipolar Euler-Poisson system to the bipolar drift-diffusion system, for data so that the latter has a smooth solution. A relative energy identity is developed for the bipolar fluid models, and it is used to show that a dissipative weak solution of the bipolar Euler-Poisson system converges in the high-friction regime to a strong and bounded away from vacuum solution of the bipolar drift-diffusion system.

Citation: Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete & Continuous Dynamical Systems, 2022, 42 (1) : 211-237. doi: 10.3934/dcds.2021113
References:
[1]

M. Bessemoulin-Chatard, C. Chainais-Hillairet and A. Jüngel, Uniform $ L^{\infty} $ estimates for approximate solutions of the bipolar drift-diffusion system, in International Conference on Finite Volumes for Complex Applications, Springer Proc. Math. Stat., Springer, Cham, 199 (2017), 381–389.  Google Scholar

[2]

R. Bianchini, Strong convergence of a vector-BGK model to the incompressible Navier-Stokes equations via the relative entropy method, J. Math. Pures Appl., 132 (2019), 280-307.  doi: 10.1016/j.matpur.2019.04.004.  Google Scholar

[3]

J. A. CarrilloA. Wróblewska-Kamińksa and Y. Peng, Relative entropy method for the relaxation limit of hydrodynamic models, Netw. Heterog. Media, 15 (2020), 369-387.  doi: 10.3934/nhm.2020023.  Google Scholar

[4]

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, New York: Plenum press, 1 (1984). Google Scholar

[5]

C. M. Dafermos, Stability of motions of thermoelastic fluids, Journal of Thermal Stresses, 2 (1979), 127-134.  doi: 10.1080/01495737908962394.  Google Scholar

[6]

M. Di Francesco and M. Wunsch, Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models, Monatsh. Math., 154 (2008), 39-50.  doi: 10.1007/s00605-008-0532-6.  Google Scholar

[7]

H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., 113 (1986), 12-35.  doi: 10.1016/0022-247X(86)90330-6.  Google Scholar

[8]

J. GiesselmannC. Lattanzio and A. E. Tzavaras, Relative energy for the Korteweg-theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223 (2017), 1427-1484.  doi: 10.1007/s00205-016-1063-2.  Google Scholar

[9]

X. HuoA. Jüngel and A. E. Tzavaras, High-friction limits of Euler flows for multicomponent systems, Nonlinearity, 32 (2019), 2875-2913.  doi: 10.1088/1361-6544/ab12a6.  Google Scholar

[10]

A. Jüngel, Transport Equations for Semiconductors, Vol. 773, Springer, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[11]

A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci., 4 (1994), 677-703.  doi: 10.1142/S0218202594000388.  Google Scholar

[12]

C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Vlue Problems, Vol. 83, American Mathematical Society, 1994. doi: 10.1090/cbms/083.  Google Scholar

[13]

D. KinderlehrerL. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations, ESAIM Control Optim. Calc. Var., 23 (2017), 137-164.  doi: 10.1051/cocv/2015043.  Google Scholar

[14]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dynam. Systems, 5 (1999), 449-455.  doi: 10.3934/dcds.1999.5.449.  Google Scholar

[15]

C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), 261-290.  doi: 10.1080/03605302.2016.1269808.  Google Scholar

[16]

C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), 1563-1584.  doi: 10.1137/120891307.  Google Scholar

[17]

A. Lenard and I. B. Bernstein, Plasma oscillations with diffusion in velocity space, Phys. Rev., 112 (1958), 1456-1459.  doi: 10.1103/PhysRev.112.1456.  Google Scholar

[18]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145.  doi: 10.1007/BF00379918.  Google Scholar

[19]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[20]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. Math. Anal. Appl., 198 (1996), 262-281.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[21]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[22] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Vol. 2, Princeton University Press, 1970.   Google Scholar

show all references

References:
[1]

M. Bessemoulin-Chatard, C. Chainais-Hillairet and A. Jüngel, Uniform $ L^{\infty} $ estimates for approximate solutions of the bipolar drift-diffusion system, in International Conference on Finite Volumes for Complex Applications, Springer Proc. Math. Stat., Springer, Cham, 199 (2017), 381–389.  Google Scholar

[2]

R. Bianchini, Strong convergence of a vector-BGK model to the incompressible Navier-Stokes equations via the relative entropy method, J. Math. Pures Appl., 132 (2019), 280-307.  doi: 10.1016/j.matpur.2019.04.004.  Google Scholar

[3]

J. A. CarrilloA. Wróblewska-Kamińksa and Y. Peng, Relative entropy method for the relaxation limit of hydrodynamic models, Netw. Heterog. Media, 15 (2020), 369-387.  doi: 10.3934/nhm.2020023.  Google Scholar

[4]

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, New York: Plenum press, 1 (1984). Google Scholar

[5]

C. M. Dafermos, Stability of motions of thermoelastic fluids, Journal of Thermal Stresses, 2 (1979), 127-134.  doi: 10.1080/01495737908962394.  Google Scholar

[6]

M. Di Francesco and M. Wunsch, Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models, Monatsh. Math., 154 (2008), 39-50.  doi: 10.1007/s00605-008-0532-6.  Google Scholar

[7]

H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., 113 (1986), 12-35.  doi: 10.1016/0022-247X(86)90330-6.  Google Scholar

[8]

J. GiesselmannC. Lattanzio and A. E. Tzavaras, Relative energy for the Korteweg-theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223 (2017), 1427-1484.  doi: 10.1007/s00205-016-1063-2.  Google Scholar

[9]

X. HuoA. Jüngel and A. E. Tzavaras, High-friction limits of Euler flows for multicomponent systems, Nonlinearity, 32 (2019), 2875-2913.  doi: 10.1088/1361-6544/ab12a6.  Google Scholar

[10]

A. Jüngel, Transport Equations for Semiconductors, Vol. 773, Springer, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[11]

A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci., 4 (1994), 677-703.  doi: 10.1142/S0218202594000388.  Google Scholar

[12]

C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Vlue Problems, Vol. 83, American Mathematical Society, 1994. doi: 10.1090/cbms/083.  Google Scholar

[13]

D. KinderlehrerL. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations, ESAIM Control Optim. Calc. Var., 23 (2017), 137-164.  doi: 10.1051/cocv/2015043.  Google Scholar

[14]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dynam. Systems, 5 (1999), 449-455.  doi: 10.3934/dcds.1999.5.449.  Google Scholar

[15]

C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), 261-290.  doi: 10.1080/03605302.2016.1269808.  Google Scholar

[16]

C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), 1563-1584.  doi: 10.1137/120891307.  Google Scholar

[17]

A. Lenard and I. B. Bernstein, Plasma oscillations with diffusion in velocity space, Phys. Rev., 112 (1958), 1456-1459.  doi: 10.1103/PhysRev.112.1456.  Google Scholar

[18]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145.  doi: 10.1007/BF00379918.  Google Scholar

[19]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[20]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. Math. Anal. Appl., 198 (1996), 262-281.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[21]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[22] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Vol. 2, Princeton University Press, 1970.   Google Scholar
[1]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[2]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[3]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[4]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[5]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[6]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[7]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[8]

José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks & Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023

[9]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[10]

Feimin Huang, Yeping Li. Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 455-470. doi: 10.3934/dcds.2009.24.455

[11]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations & Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[12]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[13]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[14]

Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292

[15]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[16]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[17]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[18]

Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553

[19]

Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modeling. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 77-92. doi: 10.3934/dcdsb.2015.20.77

[20]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (115)
  • HTML views (159)
  • Cited by (0)

Other articles
by authors

[Back to Top]