American Institute of Mathematical Sciences

doi: 10.3934/dcds.2021140
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Pure strictly uniform models of non-ergodic measure automorphisms

 1 Faculty of Pure and Applied Mathematics, Wrocław University of Technology, Wrocław, Poland 2 Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

* Corresponding author: Tomasz Downarowicz

Received  April 2021 Revised  August 2021 Early access September 2021

Fund Project: The first-named author is supported by National Science Center, Poland (Grant HARMONIA No. 2018/30/M/ST1/00061) and by the Wrocław University of Science and Technology

The classical theorem of Jewett and Krieger gives a strictly ergodic model for any ergodic measure preserving system. An extension of this result for non-ergodic systems was given many years ago by George Hansel. He constructed, for any measure preserving system, a strictly uniform model, i.e. a compact space which admits an upper semicontinuous decomposition into strictly ergodic models of the ergodic components of the measure. In this note we give a new proof of a stronger result by adding the condition of purity, which controls the set of ergodic measures that appear in the strictly uniform model.

Citation: Tomasz Downarowicz, Benjamin Weiss. Pure strictly uniform models of non-ergodic measure automorphisms. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021140
References:
 [1] M. Boyle, Lower entropy factors of sofic systems, Ergodic Theory Dynam. Sys., 3 (1983), 541-557.  doi: 10.1017/S0143385700002133.  Google Scholar [2] T. Downarowicz, Faces of simplexes of invariant measures, Israel J. Math., 165 (2008), 189-210.  doi: 10.1007/s11856-008-1009-y.  Google Scholar [3] T. Downarowicz and E. Glasner, Isomorphic extensions and applications, Topol. Meth. Nonlin. Analysis, 48 (2016), 321-338.  doi: 10.12775/TMNA.2016.050.  Google Scholar [4] T. Downarowicz and B. Weiss, When all points are generic for ergodic measures, Bull. Polish Acad. Sci. Math., 68 (2020), 117-132.  doi: 10.4064/ba210113-15-1.  Google Scholar [5] G. Hansel, Strict uniformity in ergodic theory, Math. Z., 135 (1974), 221-248.  doi: 10.1007/BF01215027.  Google Scholar [6] B. Hasselblatt, Handbook of dynamical systems, Handbook of Dynamical Systems, Vol. 1A, 239–319, North-Holland, Amsterdam, (2002). doi: 10.1016/S1874-575X(02)80005-4.  Google Scholar [7] R. I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech., 19 (1970), 717-729.   Google Scholar [8] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.  doi: 10.1007/978-1-4612-4190-4.  Google Scholar [9] W. Krieger, On unique ergodicity, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (1970), Vol. II, Berkeley-Los Angeles: University of California Press, (1972), 327–345.  Google Scholar [10] K. Kuratowski, Topology, Vol I, Academic press, New York, San Francisco, London, 1966.  Google Scholar [11] E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math., 57 (1987), 239-255.  doi: 10.1007/BF02772176.  Google Scholar

show all references

References:
 [1] M. Boyle, Lower entropy factors of sofic systems, Ergodic Theory Dynam. Sys., 3 (1983), 541-557.  doi: 10.1017/S0143385700002133.  Google Scholar [2] T. Downarowicz, Faces of simplexes of invariant measures, Israel J. Math., 165 (2008), 189-210.  doi: 10.1007/s11856-008-1009-y.  Google Scholar [3] T. Downarowicz and E. Glasner, Isomorphic extensions and applications, Topol. Meth. Nonlin. Analysis, 48 (2016), 321-338.  doi: 10.12775/TMNA.2016.050.  Google Scholar [4] T. Downarowicz and B. Weiss, When all points are generic for ergodic measures, Bull. Polish Acad. Sci. Math., 68 (2020), 117-132.  doi: 10.4064/ba210113-15-1.  Google Scholar [5] G. Hansel, Strict uniformity in ergodic theory, Math. Z., 135 (1974), 221-248.  doi: 10.1007/BF01215027.  Google Scholar [6] B. Hasselblatt, Handbook of dynamical systems, Handbook of Dynamical Systems, Vol. 1A, 239–319, North-Holland, Amsterdam, (2002). doi: 10.1016/S1874-575X(02)80005-4.  Google Scholar [7] R. I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech., 19 (1970), 717-729.   Google Scholar [8] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.  doi: 10.1007/978-1-4612-4190-4.  Google Scholar [9] W. Krieger, On unique ergodicity, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (1970), Vol. II, Berkeley-Los Angeles: University of California Press, (1972), 327–345.  Google Scholar [10] K. Kuratowski, Topology, Vol I, Academic press, New York, San Francisco, London, 1966.  Google Scholar [11] E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math., 57 (1987), 239-255.  doi: 10.1007/BF02772176.  Google Scholar
An array $x\in{\mathfrak X}$. Each symbol $x_{k,n}$ with $k\ge 2$ equals either $2x_{k-1,n}$ or $2x_{k-1,n}-1$
An array $\hat x\in\hat{\mathfrak X}$
Selected $k$-rectangles from the array on Figure 2 (two $2$-rectangles shaded dark-gray, and one $3$-rectangle shaded light-gray)
The top figure shows the classification of $2$-rectangles into good and bad. The bottom figure shows bad rectangles replaced by the tabbed rectangles of the same size. Note that some markers in row 1 have moved (but this movement does not affect the construction)
The tabbed rectangles $R_l$ and $\bar R_l$ are shown in the black frames. Their lengths are $l$ and $l+1$, respectively. They start and end in the middle of copies of the base rectangle $B_l$ (shown in gray)
 [1] Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289 [2] Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for non-ergodic measures. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2767-2789. doi: 10.3934/dcds.2020149 [3] Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128 [4] Oliver Jenkinson. Every ergodic measure is uniquely maximizing. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 383-392. doi: 10.3934/dcds.2006.16.383 [5] Yan Huang. On Hausdorff dimension of the set of non-ergodic directions of two-genus double cover of tori. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2395-2409. doi: 10.3934/dcds.2018099 [6] Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for non-conformal repellers. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5763-5780. doi: 10.3934/dcds.2017250 [7] Eli Glasner, Benjamin Weiss. A generic distal tower of arbitrary countable height over an arbitrary infinite ergodic system. Journal of Modern Dynamics, 2021, 17: 435-463. doi: 10.3934/jmd.2021015 [8] Rafael Alcaraz Barrera. Topological and ergodic properties of symmetric sub-shifts. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4459-4486. doi: 10.3934/dcds.2014.34.4459 [9] Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197 [10] Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079 [11] Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010 [12] Pedro Duarte, Silvius Klein. Topological obstructions to dominated splitting for ergodic translations on the higher dimensional torus. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5379-5387. doi: 10.3934/dcds.2018237 [13] Joachim Naumann. On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 837-852. doi: 10.3934/dcdss.2017042 [14] Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045 [15] Zuohuan Zheng, Jing Xia, Zhiming Zheng. Necessary and sufficient conditions for semi-uniform ergodic theorems and their applications. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 409-417. doi: 10.3934/dcds.2006.14.409 [16] Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873 [17] Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 [18] Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete & Continuous Dynamical Systems, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349 [19] Alexandre I. Danilenko, Mariusz Lemańczyk. Spectral multiplicities for ergodic flows. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4271-4289. doi: 10.3934/dcds.2013.33.4271 [20] Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

2020 Impact Factor: 1.392

Tools

Article outline

Figures and Tables

[Back to Top]