doi: 10.3934/dcds.2021148
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Zero-dimensional and symbolic extensions of topological flows

1. 

CNRS, Sorbonne Université, LPSM, , 75005 Paris, France

2. 

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland

Received  April 2021 Revised  July 2021 Early access October 2021

A zero-dimensional (resp. symbolic) flow is a suspension flow over a zero-dimensional system (resp. a subshift). We show that any topological flow admits a principal extension by a zero-dimensional flow. Following [6] we deduce that any topological flow admits an extension by a symbolic flow if and only if its time-$ t $ map admits an extension by a subshift for any $ t\neq 0 $. Moreover the existence of such an extension is preserved under orbit equivalence for regular topological flows, but this property does not hold for singular flows. Finally we investigate symbolic extensions for singular suspension flows. In particular, the suspension flow over the full shift on $ \{0,1\}^{\mathbb Z} $ with a roof function $ f $ vanishing at the zero sequence $ 0^\infty $ admits a principal symbolic extension or not depending on the smoothness of $ f $ at $ 0^\infty $.

Citation: David Burguet, Ruxi Shi. Zero-dimensional and symbolic extensions of topological flows. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021148
References:
[1]

L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873-875.   Google Scholar

[2]

M. Beboutoff and W. Stepanoff, Sur la mesure invariante dans les systemes dynamiques qui ne different que par le temps, Rec. Math. [Mat. Sbornik] N.S., 7 (1940), 143-166.   Google Scholar

[3]

R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.  doi: 10.1016/0022-0396(72)90013-7.  Google Scholar

[4]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions, Invent. Math., 156 (2004), 119-161.  doi: 10.1007/s00222-003-0335-2.  Google Scholar

[5]

M. BoyleD. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-757.  doi: 10.1515/form.2002.031.  Google Scholar

[6]

D. Burguet, Symbolic extensions and uniform generators for topological regular flows, J. Differential Equations, 267 (2019), 4320-4372.  doi: 10.1016/j.jde.2019.05.001.  Google Scholar

[7]

D. Burguet and T. Downarowicz, Uniform generators, symbolic extensions with an embedding, and structure of periodic orbits, J. Dynam. Differential Equations, 31 (2019), 815-852.  doi: 10.1007/s10884-018-9674-y.  Google Scholar

[8]

T. Downarowicz, Entropy structure, J. Anal. Math., 96 (2005), 57-116.  doi: 10.1007/BF02787825.  Google Scholar

[9] T. Downarowicz, Entropy in Dynamical Systems, New Mathematical Monographs, 18. Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511976155.  Google Scholar
[10]

T. Downarowicz and D. Huczek, Zero-dimensional principal extensions, Acta Appl. Math., 126 (2013), 117-129.  doi: 10.1007/s10440-013-9810-y.  Google Scholar

[11]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.  doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[12]

E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., (1999), 227–262.  Google Scholar

[13]

T. Ohno, A weak equivalence and topological entropy, Publ. Res. Inst. Math. Sci., 16 (1980), 289-298.  doi: 10.2977/prims/1195187508.  Google Scholar

[14]

W. Sun and C. Zhang, Zero entropy versus infinite entropy, Discrete Contin. Dyn. Syst., 30 (2011), 1237-1242.  doi: 10.3934/dcds.2011.30.1237.  Google Scholar

show all references

References:
[1]

L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873-875.   Google Scholar

[2]

M. Beboutoff and W. Stepanoff, Sur la mesure invariante dans les systemes dynamiques qui ne different que par le temps, Rec. Math. [Mat. Sbornik] N.S., 7 (1940), 143-166.   Google Scholar

[3]

R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.  doi: 10.1016/0022-0396(72)90013-7.  Google Scholar

[4]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions, Invent. Math., 156 (2004), 119-161.  doi: 10.1007/s00222-003-0335-2.  Google Scholar

[5]

M. BoyleD. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-757.  doi: 10.1515/form.2002.031.  Google Scholar

[6]

D. Burguet, Symbolic extensions and uniform generators for topological regular flows, J. Differential Equations, 267 (2019), 4320-4372.  doi: 10.1016/j.jde.2019.05.001.  Google Scholar

[7]

D. Burguet and T. Downarowicz, Uniform generators, symbolic extensions with an embedding, and structure of periodic orbits, J. Dynam. Differential Equations, 31 (2019), 815-852.  doi: 10.1007/s10884-018-9674-y.  Google Scholar

[8]

T. Downarowicz, Entropy structure, J. Anal. Math., 96 (2005), 57-116.  doi: 10.1007/BF02787825.  Google Scholar

[9] T. Downarowicz, Entropy in Dynamical Systems, New Mathematical Monographs, 18. Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511976155.  Google Scholar
[10]

T. Downarowicz and D. Huczek, Zero-dimensional principal extensions, Acta Appl. Math., 126 (2013), 117-129.  doi: 10.1007/s10440-013-9810-y.  Google Scholar

[11]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.  doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[12]

E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., (1999), 227–262.  Google Scholar

[13]

T. Ohno, A weak equivalence and topological entropy, Publ. Res. Inst. Math. Sci., 16 (1980), 289-298.  doi: 10.2977/prims/1195187508.  Google Scholar

[14]

W. Sun and C. Zhang, Zero entropy versus infinite entropy, Discrete Contin. Dyn. Syst., 30 (2011), 1237-1242.  doi: 10.3934/dcds.2011.30.1237.  Google Scholar

[1]

Mike Boyle, Tomasz Downarowicz. Symbolic extension entropy: $c^r$ examples, products and flows. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 329-341. doi: 10.3934/dcds.2006.16.329

[2]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

[3]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[4]

Jacek Serafin. A faithful symbolic extension. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1051-1062. doi: 10.3934/cpaa.2012.11.1051

[5]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[6]

Kengo Matsumoto. Continuous orbit equivalence of topological Markov shifts and KMS states on Cuntz–Krieger algebras. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5897-5909. doi: 10.3934/dcds.2020251

[7]

Kengo Matsumoto. Cohomology groups, continuous full groups and continuous orbit equivalence of topological Markov shifts. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021139

[8]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[9]

Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161

[10]

Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497

[11]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247

[12]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[13]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[14]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[15]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545

[16]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[17]

Michael Boshernitzan, David Damanik. Pinned repetitions in symbolic flows: preliminary results. Conference Publications, 2009, 2009 (Special) : 869-878. doi: 10.3934/proc.2009.2009.869

[18]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[19]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[20]

Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021131

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (71)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]