August  2001, 1(3): 271-298. doi: 10.3934/dcdsb.2001.1.271

Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems

1. 

Laboratorie Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette, France, France

2. 

DAMTP, Silver St, Cambridge CB3 9EW, United Kingdom

Received  December 2000 Revised  March 2001 Published  May 2001

We present a new method for proving the existence of Discrete Breathers in translationally invariant Hamiltonian systems describing massive particles interacting by a short range covex potential provided their frequency is above the linear phonon spectrum. The method holds for systems either with optical phonons (with a phonon gap) or with acoustic phonons (without phonon gap but with nonvanishing sound velocities), and does not use the concept of anticontinuous limit as most early methods. Discrete Breathers are obtained as loops in the phase space which maximize a certain average energy function for a fixed pseudoaction appropriately defined. It suffices to exhibit a trial loop with energy larger than the linear phonon energy at the same pseudoaction to prove the existence of a Discrete Breather with a frequency above the linear phonon spectrum. As a straightforward application of the method, Discrete Breathers are proven to exist at any energy (even small) in the quartic (or $\beta$) one-dimensional FPU model, which up to now was lacking a rigorous existence proof. The method can also work for piezoactive DBs in one or more dimensions and in many more complex models.
Citation: S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271
[1]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[2]

Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227

[3]

Jesús Cuevas, Bernardo Sánchez-Rey, J. C. Eilbeck, Francis Michael Russell. Interaction of moving discrete breathers with interstitial defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1057-1067. doi: 10.3934/dcdss.2011.4.1057

[4]

Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136

[5]

Qingxu Dou, Jesús Cuevas, J. C. Eilbeck, Francis Michael Russell. Breathers and kinks in a simulated crystal experiment. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1107-1118. doi: 10.3934/dcdss.2011.4.1107

[6]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[7]

A. Berger, R.S. MacKay, Vassilis Rothos. A criterion for non-persistence of travelling breathers for perturbations of the Ablowitz--Ladik lattice. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 911-920. doi: 10.3934/dcdsb.2004.4.911

[8]

Len Margolin, Catherine Plesko. Discrete regularization. Evolution Equations & Control Theory, 2019, 8 (1) : 117-137. doi: 10.3934/eect.2019007

[9]

Yuri N. Fedorov, Dmitry V. Zenkov. Dynamics of the discrete Chaplygin sleigh. Conference Publications, 2005, 2005 (Special) : 258-267. doi: 10.3934/proc.2005.2005.258

[10]

Fred Brauer, Zhilan Feng, Carlos Castillo-Chávez. Discrete epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (1) : 1-15. doi: 10.3934/mbe.2010.7.1

[11]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[12]

Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91

[13]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[14]

Kurusch Ebrahimi-Fard, Dominique Manchon. The tridendriform structure of a discrete Magnus expansion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1021-1040. doi: 10.3934/dcds.2014.34.1021

[15]

Marek Galewski, Shapour Heidarkhani, Amjad Salari. Multiplicity results for discrete anisotropic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 203-218. doi: 10.3934/dcdsb.2018014

[16]

Jean-Bernard Baillon, Guillaume Carlier. From discrete to continuous Wardrop equilibria. Networks & Heterogeneous Media, 2012, 7 (2) : 219-241. doi: 10.3934/nhm.2012.7.219

[17]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[18]

Casey L. Richardson, Laurent Younes. Computing metamorphoses between discrete measures. Journal of Geometric Mechanics, 2013, 5 (1) : 131-150. doi: 10.3934/jgm.2013.5.131

[19]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[20]

Sylvie Benzoni-Gavage, Pierre Huot. Existence of semi-discrete shocks. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 163-190. doi: 10.3934/dcds.2002.8.163

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (37)

Other articles
by authors

[Back to Top]