# American Institute of Mathematical Sciences

November  2001, 1(4): 527-541. doi: 10.3934/dcdsb.2001.1.527

## The stochastic Landau equation as an amplitude equation

 1 Institut für Mathematik, RWTH Aachen, D-52062 Aachen, Germany, Germany 2 Mathematisches Institute, Universität Bayreuth, D-95440 Bayreuth, Germany

Received  February 2001 Revised  May 2001 Published  September 2001

We consider a stochastic partial differential equation (Swift-Hohenberg equation) on the real axis with periodic boundary conditions that arises in pattern formation. If the trivial solution is near criticality, and if the stochastic forcing and the deterministic (in)stability are of a comparable magnitude, a so called stochastic Landau equation can be derived in order to describe the dynamics of the bifurcating solutions. Here we establish attractivity and approximation results for this equation.
Citation: D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527
 [1] Ling-Jun Wang. The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1129-1156. doi: 10.3934/cpaa.2012.11.1129 [2] Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071 [3] J. Burke, Edgar Knobloch. Multipulse states in the Swift-Hohenberg equation. Conference Publications, 2009, 2009 (Special) : 109-117. doi: 10.3934/proc.2009.2009.109 [4] Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875 [5] Peng Gao. Averaging principles for the Swift-Hohenberg equation. Communications on Pure & Applied Analysis, 2020, 19 (1) : 293-310. doi: 10.3934/cpaa.2020016 [6] Yuncherl Choi, Taeyoung Ha, Jongmin Han, Doo Seok Lee. Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2543-2567. doi: 10.3934/dcdsb.2017087 [7] Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068 [8] John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170 [9] Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273 [10] Yixia Shi, Maoan Han. Existence of generalized homoclinic solutions for a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020114 [11] Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431 [12] Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 [13] Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 [14] Masoud Yari. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 441-456. doi: 10.3934/dcdsb.2007.7.441 [15] Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333 [16] Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575 [17] Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075 [18] Xiaobin Sun, Jianliang Zhai. Averaging principle for stochastic real Ginzburg-Landau equation driven by $\alpha$-stable process. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1291-1319. doi: 10.3934/cpaa.2020063 [19] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 [20] Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

2018 Impact Factor: 1.008