
Previous Article
Control of Kalmanlike filters using impulse and continuous feedback design
 DCDSB Home
 This Issue

Next Article
Dynamics of the thermohaline circulation under wind forcing
Analysis of upscaling absolute permeability
1.  Applied & Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States 
2.  Department of Mathematics, Texas A&M University, College Station, TX 778433368, United States 
3.  Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States 
[1] 
Zhiming Chen, Weibing Deng, Huang Ye. A new upscaling method for the solute transport equations. Discrete & Continuous Dynamical Systems  A, 2005, 13 (4) : 941960. doi: 10.3934/dcds.2005.13.941 
[2] 
Kundan Kumar, Tycho van Noorden, Iuliu Sorin Pop. Upscaling of reactive flows in domains with moving oscillating boundaries. Discrete & Continuous Dynamical Systems  S, 2014, 7 (1) : 95111. doi: 10.3934/dcdss.2014.7.95 
[3] 
Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (8) : 42274246. doi: 10.3934/dcds.2016.36.4227 
[4] 
Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709747. doi: 10.3934/ipi.2012.6.709 
[5] 
Martin Hanke. Why linear sampling really seems to work. Inverse Problems & Imaging, 2008, 2 (3) : 373395. doi: 10.3934/ipi.2008.2.373 
[6] 
T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems  B, 2007, 7 (1) : 125144. doi: 10.3934/dcdsb.2007.7.125 
[7] 
Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 12951305. doi: 10.3934/ipi.2013.7.1295 
[8] 
Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$equations at resonance. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 20372060. doi: 10.3934/dcds.2014.34.2037 
[9] 
D. Bonheure, C. Fabry. A variational approach to resonance for asymmetric oscillators. Communications on Pure & Applied Analysis, 2007, 6 (1) : 163181. doi: 10.3934/cpaa.2007.6.163 
[10] 
Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete & Continuous Dynamical Systems  A, 2014, 34 (7) : 28472860. doi: 10.3934/dcds.2014.34.2847 
[11] 
Jijiang Sun, ChunLei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 21392154. doi: 10.3934/dcds.2013.33.2139 
[12] 
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 11471168. doi: 10.3934/cpaa.2017056 
[13] 
Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a twostage multilevel sampling method. Discrete & Continuous Dynamical Systems  S, 2015, 8 (3) : 547561. doi: 10.3934/dcdss.2015.8.547 
[14] 
Tian Xiang. On effects of sampling radius for the nonlocal PatlakKellerSegel chemotaxis model. Discrete & Continuous Dynamical Systems  A, 2014, 34 (11) : 49114946. doi: 10.3934/dcds.2014.34.4911 
[15] 
Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using farfield data. Inverse Problems & Imaging, 2013, 7 (3) : 757775. doi: 10.3934/ipi.2013.7.757 
[16] 
Lorenzo Audibert. The generalized linear sampling and factorization methods only depends on the sign of contrast on the boundary. Inverse Problems & Imaging, 2017, 11 (6) : 11071119. doi: 10.3934/ipi.2017051 
[17] 
Reuven Cohen, Mira Gonen, Avishai Wool. Bounding the bias of treelike sampling in IP topologies. Networks & Heterogeneous Media, 2008, 3 (2) : 323332. doi: 10.3934/nhm.2008.3.323 
[18] 
Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial & Management Optimization, 2015, 11 (1) : 105133. doi: 10.3934/jimo.2015.11.105 
[19] 
Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete & Continuous Dynamical Systems  A, 2003, 9 (1) : 130. doi: 10.3934/dcds.2003.9.1 
[20] 
Grégoire Allaire, Harsha Hutridurga. On the homogenization of multicomponent transport. Discrete & Continuous Dynamical Systems  B, 2015, 20 (8) : 25272551. doi: 10.3934/dcdsb.2015.20.2527 
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]