2002, 2(1): 35-46. doi: 10.3934/dcdsb.2002.2.35

Simulation of stationary chemical patterns and waves in ionic reactions

1. 

Department of Physical Chemistry, University of Würzburg, D-97074 Würzburg, Germany

Received  August 2001 Revised  October 2001 Published  November 2001

In numerical simulations based on a general model chemical patterns in ionic reaction-advection systems assuming a "self-consistent" electric field are presented. Chemical waves as well as stationary concentration patterns arise due to an interplay of an autocatalytic chemical reaction with diffusion, migration of ions in an applied electric field and hydrodynamic flow. Concentration gradients inside the chemical pattern lead to electric diffusion-potentials which in turn affect the patterns. Thus,the model equations take the general form of the Fokker-Planck equation. The principles of modeling a ionic reaction-diffusion-migration system are applied to a real chemical system, the nonlinear methylene blue-sulfide-oxygen reaction.
Citation: Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35
[1]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[2]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[3]

Michael W. Smiley, Howard A. Levine, Marit Nilsen Hamilton. Numerical simulation of capillary formation during the onset of tumor angiogenesis. Conference Publications, 2003, 2003 (Special) : 817-826. doi: 10.3934/proc.2003.2003.817

[4]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[5]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[6]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[7]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[8]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[9]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[10]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[11]

Pierre Degond, Marcello Delitala. Modelling and simulation of vehicular traffic jam formation. Kinetic & Related Models, 2008, 1 (2) : 279-293. doi: 10.3934/krm.2008.1.279

[12]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[13]

Petr Bauer, Michal Beneš, Radek Fučík, Hung Hoang Dieu, Vladimír Klement, Radek Máca, Jan Mach, Tomáš Oberhuber, Pavel Strachota, Vítězslav Žabka, Vladimír Havlena. Numerical simulation of flow in fluidized beds. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 833-846. doi: 10.3934/dcdss.2015.8.833

[14]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[15]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part I: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[16]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[17]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[18]

Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867

[19]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[20]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]