
Previous Article
The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments
 DCDSB Home
 This Issue

Next Article
Theory and simulation of real and ideal magnetohydrodynamic turbulence
The constrained planar Nvortex problem: I. Integrability
1.  Department of Aerospace & Mechanical Engineering and Department of Mathematics, University of Southern California, Los Angeles, CA 900891191, United States, United States, United States 
[1] 
P.K. Newton. Nvortex equilibrium theory. Discrete & Continuous Dynamical Systems  A, 2007, 19 (2) : 411418. doi: 10.3934/dcds.2007.19.411 
[2] 
Nicolas Forcadel, Cyril Imbert, Régis Monneau. Homogenization of some particle systems with twobody interactions and of the dislocation dynamics. Discrete & Continuous Dynamical Systems  A, 2009, 23 (3) : 785826. doi: 10.3934/dcds.2009.23.785 
[3] 
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems  B, 2005, 5 (1) : 125136. doi: 10.3934/dcdsb.2005.5.125 
[4] 
Shaoyun Shi, Wenlei Li. Nonintegrability of generalized YangMills Hamiltonian system. Discrete & Continuous Dynamical Systems  A, 2013, 33 (4) : 16451655. doi: 10.3934/dcds.2013.33.1645 
[5] 
Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete & Continuous Dynamical Systems  A, 2017, 37 (10) : 51635190. doi: 10.3934/dcds.2017224 
[6] 
Juan J. MoralesRuiz, Sergi Simon. On the meromorphic nonintegrability of some $N$body problems. Discrete & Continuous Dynamical Systems  A, 2009, 24 (4) : 12251273. doi: 10.3934/dcds.2009.24.1225 
[7] 
Younghun Hong. Strichartz estimates for $N$body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems  A, 2017, 37 (10) : 53555365. doi: 10.3934/dcds.2017233 
[8] 
Xavier Perrot, Xavier Carton. Pointvortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems  B, 2009, 11 (4) : 971995. doi: 10.3934/dcdsb.2009.11.971 
[9] 
Mitsuru Shibayama. Nonintegrability criterion for homogeneous Hamiltonian systems via blowingup technique of singularities. Discrete & Continuous Dynamical Systems  A, 2015, 35 (8) : 37073719. doi: 10.3934/dcds.2015.35.3707 
[10] 
A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 24652478. doi: 10.3934/dcdsb.2017126 
[11] 
Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems  A, 2014, 34 (11) : 45894615. doi: 10.3934/dcds.2014.34.4589 
[12] 
Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553575. doi: 10.3934/ipi.2017026 
[13] 
Shaoyong Lai, Qichang Xie. A selection problem for a constrained linear regression model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 757766. doi: 10.3934/jimo.2008.4.757 
[14] 
Mitsuru Shibayama. Nonintegrability of the collinear threebody problem. Discrete & Continuous Dynamical Systems  A, 2011, 30 (1) : 299312. doi: 10.3934/dcds.2011.30.299 
[15] 
Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure & Applied Analysis, 2016, 15 (4) : 13351350. doi: 10.3934/cpaa.2016.15.1335 
[16] 
Yong Zhou, Jishan Fan. Regularity criteria of strong solutions to a problem of magnetoelastic interactions. Communications on Pure & Applied Analysis, 2010, 9 (6) : 16971704. doi: 10.3934/cpaa.2010.9.1697 
[17] 
Ludovick Gagnon. Qualitative description of the particle trajectories for the Nsolitons solution of the Kortewegde Vries equation. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 14891507. doi: 10.3934/dcds.2017061 
[18] 
D. Novikov and S. Yakovenko. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electronic Research Announcements, 1999, 5: 5565. 
[19] 
Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems  A, 2006, 14 (2) : 295328. doi: 10.3934/dcds.2006.14.295 
[20] 
Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems  S, 2016, 9 (3) : 619629. doi: 10.3934/dcdss.2016016 
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]