• Previous Article
    Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms
November  2005, 5(4): 991-1004. doi: 10.3934/dcdsb.2005.5.991

Local chaotic behaviour in the Fermi-Pasta-Ulam system

1. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via R. Cozzi 53, 20125 - Milano, Italy, Italy, Italy

Received  November 2004 Revised  April 2005 Published  August 2005

We discuss the use of the maximal Lyapunov Characteristic Number as a stochasticity indicator in connection with the persistence of the FPU paradox in the thermodynamic limit. We show that the positiveness of the LCN does not imply that the dynamic is ergodic in statistical sense. On the other hand, our numerical exploration suggests that the energy surface may be separated into different chaotic regions that may trap the orbit for a long time. This is compatible with the existence of exponentially long times of relaxation to statistical equilibrium in the sense of Nekhoroshev's theory. Thus, the relevance of the FPU phenomenon for large systems remains a still open problem.
Citation: Antonio Giorgilli, Simone Paleari, Tiziano Penati. Local chaotic behaviour in the Fermi-Pasta-Ulam system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 991-1004. doi: 10.3934/dcdsb.2005.5.991
[1]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[2]

Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113

[3]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[4]

Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482

[5]

Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic & Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013

[6]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[7]

Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855

[8]

Frank Jochmann. A singular limit in a nonlinear problem arising in electromagnetism. Communications on Pure & Applied Analysis, 2011, 10 (2) : 541-559. doi: 10.3934/cpaa.2011.10.541

[9]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[10]

Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model. Mathematical Biosciences & Engineering, 2009, 6 (3) : 585-590. doi: 10.3934/mbe.2009.6.585

[11]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[12]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[13]

Marie Henry. Singular limit of an activator-inhibitor type model. Networks & Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781

[14]

Elisabeth Logak, Chao Wang. The singular limit of a haptotaxis model with bistable growth. Communications on Pure & Applied Analysis, 2012, 11 (1) : 209-228. doi: 10.3934/cpaa.2012.11.209

[15]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[16]

Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141

[17]

Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995

[18]

Yong Fang. Thermodynamic invariants of Anosov flows and rigidity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1185-1204. doi: 10.3934/dcds.2009.24.1185

[19]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[20]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

[Back to Top]