2006, 6(1): 129-150. doi: 10.3934/dcdsb.2006.6.129

Drug resistance in cancer chemotherapy as an optimal control problem

1. 

Department of Mathematics and Statistics, Southern Illinois University at Edwardsville, Edwardsville, IL 62026-1653

2. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

Received  November 2004 Revised  August 2005 Published  October 2005

We analyze non cell-cycle specific mathematical models for drug resistance in cancer chemotherapy. In each model developing drug resistance is inevitable and the issue is how to prolong its onset. Distinguishing between sensitive and resistant cells we consider a model which includes interactions of two killing agents which generate separate resistant populations. We formulate an associated optimal control problem for chemotherapy and analyze the qualitative structure of corresponding optimal controls.
Citation: Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129
[1]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[2]

Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803

[3]

Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905

[4]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[5]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[6]

Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038

[7]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

[8]

Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 451-467. doi: 10.3934/mbe.2009.6.451

[9]

Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

[10]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[11]

Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415

[12]

K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499-510. doi: 10.3934/mbe.2005.2.499

[13]

Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95

[14]

Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553

[15]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[16]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[17]

Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer. Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1895-1915. doi: 10.3934/dcdsb.2016028

[18]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[19]

Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279

[20]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]