# American Institute of Mathematical Sciences

November  2006, 6(6): 1431-1444. doi: 10.3934/dcdsb.2006.6.1431

## Optimal feedback production for a single-echelon supply chain

 1 Department of Computational and Applied Mathematics, University of The Witwatersrand, Johannesburg 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China 3 Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Received  August 2005 Revised  May 2006 Published  August 2006

The dynamics of a supply chain have been modelled by several authors, yet no attempt has ever been made for finding the vendor's optimal production policy when facing such dynamics. In this paper, we model the dynamics of a supply chain as an infinite-horizon time-delayed optimal control problem. By approximating the time interval $[ 0,\infty )$ by $0,T_f$, we obtain an approximated problem $P(T_f)$ which can be easily solved by the control parametrization method. Moreover, we can show that the objective function of the approximated problem converges to that of the original problem as $T_f \to \infty$. Lastly, we also extend our method to solving a stochastic problem where the demand is a stochastic process with white noise input. Several examples for both the deterministic and the stochastic problems are solved to illustrate the efficiency of our method. In these examples, some important results relating the production rate to the demand are developed.
Citation: K.H. Wong, Chi Kin Chan, H. W.J. Lee. Optimal feedback production for a single-echelon supply chain. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1431-1444. doi: 10.3934/dcdsb.2006.6.1431
 [1] Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713-726. doi: 10.3934/jimo.2008.4.713 [2] Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737 [3] Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191 [4] Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631 [5] Loïc Louison, Abdennebi Omrane, Harry Ozier-Lafontaine, Delphine Picart. Modeling plant nutrient uptake: Mathematical analysis and optimal control. Evolution Equations & Control Theory, 2015, 4 (2) : 193-203. doi: 10.3934/eect.2015.4.193 [6] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014 [7] N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235 [8] Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161 [9] A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289 [10] Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063 [11] Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 [12] Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085 [13] Sanling Yuan, Yongli Song, Junhui Li. Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 893-914. doi: 10.3934/dcdsb.2011.15.893 [14] Evgeny I. Veremey, Vladimir V. Eremeev. SISO H-Optimal synthesis with initially specified structure of control law. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 121-138. doi: 10.3934/naco.2017009 [15] Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19 [16] Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144 [17] Yuting Ding, Jinli Xu, Jun Cao, Dongyan Zhang. Mathematical modeling about nonlinear delayed hydraulic cylinder system and its analysis on dynamical behaviors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 943-958. doi: 10.3934/dcdss.2017049 [18] Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653 [19] Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004 [20] Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

2018 Impact Factor: 1.008

## Metrics

• PDF downloads (8)
• HTML views (0)
• Cited by (3)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]