
Previous Article
Numerical methods for stiff reactiondiffusion systems
 DCDSB Home
 This Issue

Next Article
Comparison of quarterplane and twopoint boundary value problems: The KdVequation
Analytical solutions for phase transitions in a slender elastic cylinder under nondeforming and other boundary conditions
1.  Department of Mechanics, Tianjin University, Tianjin, 300072, China 
2.  Department of Mathematics and Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China 
[1] 
G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete & Continuous Dynamical Systems  B, 2004, 4 (4) : 10131032. doi: 10.3934/dcdsb.2004.4.1013 
[2] 
Emil Minchev. Existence and uniqueness of solutions of a system of nonlinear PDE for phase transitions with vector order parameter. Conference Publications, 2005, 2005 (Special) : 652661. doi: 10.3934/proc.2005.2005.652 
[3] 
Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete & Continuous Dynamical Systems  A, 1995, 1 (2) : 237252. doi: 10.3934/dcds.1995.1.237 
[4] 
Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initialboundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 825837. doi: 10.3934/dcdsb.2007.7.825 
[5] 
Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initialboundary condition: (II) Convergence. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 839857. doi: 10.3934/dcdsb.2007.7.839 
[6] 
Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems  B, 2011, 16 (3) : 883894. doi: 10.3934/dcdsb.2011.16.883 
[7] 
ShuYi Zhang. Existence of multidimensional nonisothermal phase transitions in a steady van der Waals flow. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 22212239. doi: 10.3934/dcds.2013.33.2221 
[8] 
Giovanna Bonfanti, Fabio Luterotti. A wellposedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete & Continuous Dynamical Systems  S, 2013, 6 (2) : 331351. doi: 10.3934/dcdss.2013.6.331 
[9] 
Ruifeng Zhang, Nan Liu, Man An. Analytical solutions of Skyrme model. Discrete & Continuous Dynamical Systems  S, 2016, 9 (6) : 22012211. doi: 10.3934/dcdss.2016092 
[10] 
Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545556. doi: 10.3934/cpaa.2004.3.545 
[11] 
Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139148. doi: 10.3934/mbe.2014.11.139 
[12] 
Jie Jiang, Boling Guo. Asymptotic behavior of solutions to a onedimensional full model for phase transitions with microscopic movements. Discrete & Continuous Dynamical Systems  A, 2012, 32 (1) : 167190. doi: 10.3934/dcds.2012.32.167 
[13] 
Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391411. doi: 10.3934/jgm.2016013 
[14] 
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to threedimensional thermoviscoelasticity with nonlinear temperaturedependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 13311372. doi: 10.3934/cpaa.2017065 
[15] 
Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 13891400. doi: 10.3934/dcdsb.2016001 
[16] 
Steffen Arnrich. Modelling phase transitions via Young measures. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 2948. doi: 10.3934/dcdss.2012.5.29 
[17] 
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287301. doi: 10.3934/nhm.2009.4.287 
[18] 
Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems  A, 2013, 33 (1) : 163172. doi: 10.3934/dcds.2013.33.163 
[19] 
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropicnematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 565579. doi: 10.3934/dcdss.2011.4.565 
[20] 
Nicolai T. A. Haydn. Phase transitions in onedimensional subshifts. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 19651973. doi: 10.3934/dcds.2013.33.1965 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]