
Previous Article
Brain anatomical feature detection by solving partial differential equations on general manifolds
 DCDSB Home
 This Issue

Next Article
Higherorder shallow water equations and the CamassaHolm equation
Resonant oscillations of an inhomogeneous gas in a closed cylindrical tube
1.  Department of Applied Mathematics, University College, Cork, Ireland 
2.  Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada 
[1] 
Alexander Krasnosel'skii. Resonant forced oscillations in systems with periodic nonlinearities. Discrete & Continuous Dynamical Systems  A, 2013, 33 (1) : 239254. doi: 10.3934/dcds.2013.33.239 
[2] 
Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 141. doi: 10.3934/dcdss.2020068 
[3] 
Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous EulerKorteweg fluids. Discrete & Continuous Dynamical Systems  S, 2010, 3 (3) : 497515. doi: 10.3934/dcdss.2010.3.497 
[4] 
Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 11651181. doi: 10.3934/cpaa.2011.10.1165 
[5] 
John Banks. Topological mapping properties defined by digraphs. Discrete & Continuous Dynamical Systems  A, 1999, 5 (1) : 8392. doi: 10.3934/dcds.1999.5.83 
[6] 
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems  S, 2013, 6 (5) : 13151322. doi: 10.3934/dcdss.2013.6.1315 
[7] 
Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163188. doi: 10.3934/cpaa.2017008 
[8] 
Fabiana Maria Ferreira, Francisco Odair de Paiva. On a resonant and superlinear elliptic system. Discrete & Continuous Dynamical Systems  A, 2019, 39 (10) : 57755784. doi: 10.3934/dcds.2019253 
[9] 
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541547. doi: 10.3934/cpaa.2007.6.541 
[10] 
Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115145. doi: 10.3934/jmd.2018014 
[11] 
Jacopo De Simoi. On cyclicityone elliptic islands of the standard map. Journal of Modern Dynamics, 2013, 7 (2) : 153208. doi: 10.3934/jmd.2013.7.153 
[12] 
Haifeng Chu. Surgery on Herman rings of the standard Blaschke family. Discrete & Continuous Dynamical Systems  A, 2018, 38 (1) : 6374. doi: 10.3934/dcds.2018003 
[13] 
Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete & Continuous Dynamical Systems  A, 2011, 30 (2) : 379426. doi: 10.3934/dcds.2011.30.379 
[14] 
Maksym Berezhnyi, Evgen Khruslov. Nonstandard dynamics of elastic composites. Networks & Heterogeneous Media, 2011, 6 (1) : 89109. doi: 10.3934/nhm.2011.6.89 
[15] 
Pavao Mardešić, David Marín, Jordi Villadelprat. Unfolding of resonant saddles and the Dulac time. Discrete & Continuous Dynamical Systems  A, 2008, 21 (4) : 12211244. doi: 10.3934/dcds.2008.21.1221 
[16] 
Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 4156. doi: 10.3934/nhm.2006.1.41 
[17] 
Martin Gugat, Falk M. Hante, Markus HirschDick, Günter Leugering. Stationary states in gas networks. Networks & Heterogeneous Media, 2015, 10 (2) : 295320. doi: 10.3934/nhm.2015.10.295 
[18] 
Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems  A, 2017, 37 (6) : 33873410. doi: 10.3934/dcds.2017143 
[19] 
Jonathan E. Rubin, Justyna SignerskaRynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixedmode oscillations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 40034039. doi: 10.3934/dcdsb.2017205 
[20] 
Peng Feng, Menaka Navaratna. Modelling periodic oscillations during somitogenesis. Mathematical Biosciences & Engineering, 2007, 4 (4) : 661673. doi: 10.3934/mbe.2007.4.661 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]