July  2008, 10(1): 171-196. doi: 10.3934/dcdsb.2008.10.171

Multi-layer quasi-geostrophic equations of the ocean with delays

1. 

Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States

Received  May 2007 Revised  December 2007 Published  April 2008

In this article, we study the multi-layer quasi-geostrophic equations of the ocean with delays. We prove the existence and uniqueness of the solutions to these equations when the external force contains some delays. We also discuss the asymptotic behavior of the solution and the stability of the stationary solutions. Furthermore, we prove in [20] the existence of an attractor for the model.
Citation: T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171
[1]

T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119

[2]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[3]

May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179

[4]

Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

[5]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[6]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[7]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[8]

Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293

[9]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[10]

Djano Kandaswamy, Thierry Blu, Dimitri Van De Ville. Analytic sensing for multi-layer spherical models with application to EEG source imaging. Inverse Problems & Imaging, 2013, 7 (4) : 1251-1270. doi: 10.3934/ipi.2013.7.1251

[11]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[12]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[13]

Khalid Boushaba. A multi layer method applied to a model of phytoplankton. Networks & Heterogeneous Media, 2007, 2 (1) : 37-54. doi: 10.3934/nhm.2007.2.37

[14]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[15]

Yejuan Wang, Kuang Bai. Pullback attractors for a class of nonlinear lattices with delays. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1213-1230. doi: 10.3934/dcdsb.2015.20.1213

[16]

Tomás Caraballo, Gábor Kiss. Attractors for differential equations with multiple variable delays. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1365-1374. doi: 10.3934/dcds.2013.33.1365

[17]

Mohamed Ali Hammami, Lassaad Mchiria, Sana Netchaoui, Stefanie Sonner. Pullback exponential attractors for differential equations with variable delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019183

[18]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[19]

O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multi-D viscous shocks. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 131-160. doi: 10.3934/dcds.2004.11.131

[20]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]