2008, 10(2&3, September): 323-347. doi: 10.3934/dcdsb.2008.10.323

The inner equation for generic analytic unfoldings of the Hopf-zero singularity

1. 

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

Received  October 2006 Revised  July 2007 Published  June 2008

A classical problem in the study of the (conservative) unfoldings of the so called Hopf-zero bifurcation, is the computation of the splitting of a heteroclinic connection which exists in the symmetric normal form along the z-axis. In this paper we derive the inner system associated to this singular problem, which is independent on the unfolding parameter. We prove the existence of two solutions of this system related with the stable and unstable manifolds of the unfolding, and we give an asymptotic formula for their difference. We check that the results in this work agree with the ones obtained in the regular case by the authors.
Citation: I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323
[1]

Freddy Dumortier, Santiago Ibáñez, Hiroshi Kokubu, Carles Simó. About the unfolding of a Hopf-zero singularity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4435-4471. doi: 10.3934/dcds.2013.33.4435

[2]

Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027

[3]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[4]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[5]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[6]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[7]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[8]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[9]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[10]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[11]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2018, 22 (11) : 1-24. doi: 10.3934/dcdsb.2018183

[12]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[13]

Pau Martín, David Sauzin, Tere M. Seara. Resurgence of inner solutions for perturbations of the McMillan map. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 165-207. doi: 10.3934/dcds.2011.31.165

[14]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[15]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[16]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

[17]

Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147

[18]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

[19]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[20]

Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]