September  2010, 14(2): 719-732. doi: 10.3934/dcdsb.2010.14.719

Global bifurcations from the center of mass in the Sitnikov problem

1. 

Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada

2. 

Departamento de Ciencias Naturales y Matemáticas, Facultad de Ingeniería, Pontificia Universidad Javeriana Cali, 26239 Cali, Colombia

Received  June 2009 Revised  November 2009 Published  June 2010

The Sitnikov problem is a restricted three body problem where the eccentricity of the primaries acts as a parameter. We find families of symmetric periodic solutions bifurcating from the equilibrium at the center of mass. These families admit a global continuation up to excentricity $e=1$. The same techniques are applicable to the families obtained by continuation from the circular problem ($e=0$). They lead to a refinement of a result obtained by J. Llibre and R. Ortega.
Citation: Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 719-732. doi: 10.3934/dcdsb.2010.14.719
[1]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[2]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[3]

Clark Robinson. Uniform subharmonic orbits for Sitnikov problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 647-652. doi: 10.3934/dcdss.2008.1.647

[4]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[5]

Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421

[6]

Marcelo Marchesin. The mass dependence of the period of the periodic solutions of the Sitnikov problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 597-609. doi: 10.3934/dcdss.2008.1.597

[7]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[8]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[9]

Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379

[10]

Qunyao Yin, Shiqing Zhang. New periodic solutions for the circular restricted 3-body and 4-body problems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 249-260. doi: 10.3934/cpaa.2010.9.249

[11]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[12]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[13]

Duokui Yan, Tiancheng Ouyang, Zhifu Xie. Classification of periodic orbits in the planar equal-mass four-body problem. Conference Publications, 2015, 2015 (special) : 1115-1124. doi: 10.3934/proc.2015.1115

[14]

Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987

[15]

Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057

[16]

Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-22. doi: 10.3934/dcdss.2020073

[17]

Martha Alvarez, Joaquin Delgado, Jaume Llibre. On the spatial central configurations of the 5--body problem and their bifurcations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 505-518. doi: 10.3934/dcdss.2008.1.505

[18]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[19]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[20]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]