January  2011, 15(1): 137-170. doi: 10.3934/dcdsb.2011.15.137

The initial layer for Rayleigh problem

1. 

Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

Received  August 2009 Revised  July 2010 Published  October 2010

Rayleigh's problem of an infinite flat plate set into uniform motion impulsively in its own plane is studied by using the BKW model, the linearized Boltzmann equation and the full Boltzmann equation, respectively. The purpose is to study the gas motion under the diffuse reflection boundary condition. For a small impulsive velocity (small Mach number) and short time, the flow behaves like a free molecule flow. Our analysis is based on certain pointwise estimates for the solution of the problem and flow velocity.
Citation: Hung-Wen Kuo. The initial layer for Rayleigh problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 137-170. doi: 10.3934/dcdsb.2011.15.137
References:
[1]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994). Google Scholar

[2]

E. P. Gross and E. A. Jackson, Kinetic theory of the impulsive motion of an infinite plane,, Phys. Fluids, 1 (1958), 318. doi: doi:10.1063/1.1705890. Google Scholar

[3]

Hsun-Tiao Yang and Lester. Lees, Rayleigh's problem at low Mach number according to the kinetic theory of gases,, J. Math. and Phys, 35 (1956), 192. Google Scholar

[4]

Y. Sone, Kinetic theory analysis of the linearized Rayleigh problem,, Phys. Fluids, 7 (1964), 470. doi: doi:10.1063/1.1711221. Google Scholar

[5]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulation in Science, (2002). Google Scholar

[6]

Y. Sone, "Molecular Gas Dynamics. Theory, Techniques, and Applications,", Modeling and Simulation in Science, (2007). Google Scholar

show all references

References:
[1]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994). Google Scholar

[2]

E. P. Gross and E. A. Jackson, Kinetic theory of the impulsive motion of an infinite plane,, Phys. Fluids, 1 (1958), 318. doi: doi:10.1063/1.1705890. Google Scholar

[3]

Hsun-Tiao Yang and Lester. Lees, Rayleigh's problem at low Mach number according to the kinetic theory of gases,, J. Math. and Phys, 35 (1956), 192. Google Scholar

[4]

Y. Sone, Kinetic theory analysis of the linearized Rayleigh problem,, Phys. Fluids, 7 (1964), 470. doi: doi:10.1063/1.1711221. Google Scholar

[5]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulation in Science, (2002). Google Scholar

[6]

Y. Sone, "Molecular Gas Dynamics. Theory, Techniques, and Applications,", Modeling and Simulation in Science, (2007). Google Scholar

[1]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[2]

Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic & Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036

[3]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[4]

Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143

[5]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[6]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[7]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[8]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[9]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[10]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[11]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[12]

Hao Tang, Zhengrong Liu. On the Cauchy problem for the Boltzmann equation in Chemin-Lerner type spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2229-2256. doi: 10.3934/dcds.2016.36.2229

[13]

Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423

[14]

Hong Il Cho, Myungwoo Lee, Ganguk Hwang. A cross-layer relay selection scheme of a wireless network with multiple relays under Rayleigh fading. Journal of Industrial & Management Optimization, 2014, 10 (1) : 1-19. doi: 10.3934/jimo.2014.10.1

[15]

X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure & Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419

[16]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[17]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[18]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[19]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[20]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]