January  2011, 15(1): 197-215. doi: 10.3934/dcdsb.2011.15.197

Approximate tracking of periodic references in a class of bilinear systems via stable inversion

1. 

Department of Applied Mathematics IV, Universitat Politècnica de Catalunya, Av. Víctor Balaguer, s/n, 08800 Vilanova i la Geltrú, Spain

2. 

Department of Applied Mathematics I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain

Received  December 2009 Revised  August 2010 Published  October 2010

This article deals with the tracking control of periodic references in single-input single-output bilinear systems using a stable inversion-based approach. Assuming solvability of the exact tracking problem and asymptotic stability of the nominal error system, the study focuses on the output behavior when the control scheme uses a periodic approximation of the nominal feedforward input signal $u_d$. The investigation shows that this results in a periodic, asymptotically stable output; moreover, a sequence of periodic control inputs $u_n$ uniformly convergent to $u_d$ produce a sequence of output responses that, in turn, converge uniformly to the output reference. It is also shown that, for a special class of bilinear systems, the internal dynamics equation can be approximately solved by an iterative procedure that provides of closed-form analytic expressions uniformly convergent to its exact solution. Then, robustness in the face of bounded parametric disturbances/uncertainties is achievable through dynamic compensation. The theoretical analysis is applied to nonminimum phase switched power converters.
Citation: Josep M. Olm, Xavier Ros-Oton. Approximate tracking of periodic references in a class of bilinear systems via stable inversion. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 197-215. doi: 10.3934/dcdsb.2011.15.197
References:
[1]

F. Amato, C. Cosentino, A. S. Fiorillo and A. Merola, Stabilization of bilinear systems via linear state-feedback control,, IEEE Trans. Circ. Syst.-II, 56 (2009), 76. Google Scholar

[2]

R. O. Cáceres and I. Barbi, A boost DC-AC converter: Analysis, design and experimentation,, IEEE Trans. Power Electronics, 14 (1999), 134. doi: doi:10.1109/63.737601. Google Scholar

[3]

M. Carpita and M. Marchesoni, Experimental study of a power conditioning system using sliding mode control,, IEEE Trans. Power Electronics, 11 (1996), 731. doi: doi:10.1109/63.535405. Google Scholar

[4]

D. Cortés, Jq. Álvarez, J. Álvarez and A. Fradkov, Tracking control of the boost converter,, IEEE Proceedings Control Theory Applications, 151 (2004), 218. doi: doi:10.1049/ip-cta:20040203. Google Scholar

[5]

S. Devasia, D. Chen and B. Paden, Nonlinear inversion-based output tracking,, IEEE Trans. Automatic Control, 41 (1996), 930. doi: doi:10.1109/9.508898. Google Scholar

[6]

D. L. Elliott, "Bilinear Control Systems. Matrices in Action,", Springer, (2009). Google Scholar

[7]

M. Farkas, "Periodic Motions,", Springer-Verlag, (1994). Google Scholar

[8]

E. Fossas and J. M. Olm, Asymptotic tracking in DC-to-DC nonlinear power converters,, Discrete Continuous Dynam. Systems - B, 2 (2002), 295. Google Scholar

[9]

E. Fossas and J. M. Olm, Galerkin method and approximate tracking in a nonminimum phase bilinear system,, Discrete Continuous Dynam. Systems - B, 7 (2007), 53. Google Scholar

[10]

E. Fossas and J. M. Olm, A functional iterative approach to the tracking control of nonminimum phase switched power converters,, Math. Control Signals Syst., 21 (2009), 203. doi: doi:10.1007/s00498-009-0044-5. Google Scholar

[11]

E. Fossas, J. M. Olm, A. Zinober and Y. Shtessel, Galerkin-based sliding mode tracking control of nonminimum phase DC-to-DC power converters,, Internat. J. Robust Nonlinear Control, 17 (2007), 587. doi: doi:10.1002/rnc.1136. Google Scholar

[12]

H. K. Khalil, "Nonlinear Systems,", 3rd edition, (2002). Google Scholar

[13]

R. R. Mohler, "Nonlinear Systems, vol. 2: Applications to Bilinear Control,", Prentice Hall, (1991). Google Scholar

[14]

J. M. Olm, "Asymptotic Tracking with DC-to-DC Bilinear Power Converters,", Ph. D thesis, (2004). Google Scholar

[15]

J. M. Olm, X. Ros-Oton and Y. B. Shtessel, Stable inversion of Abel equations: application to tracking control in DC-DC nonminimum phase boost converters,, Automatica, (2010). doi: doi:10.1109/CDC.2007.4434276. Google Scholar

[16]

A. Pavlov and K. Y. Pettersen, Stable inversion of non-minimum phase nonlinear systems: A convergent systems approach,, in, (2007), 3995. Google Scholar

[17]

A. D. Polyanin, "Handbook of Exact Solutions for Ordinary Differential Equations,", 2nd edition, (2003). Google Scholar

[18]

S. Sastry, "Nonlinear Systems. Analysis, Stability and Control,", Springer-Verlag, (1999). Google Scholar

[19]

Y. Shtessel, A. Zinober and I. Shkolnikov, Sliding mode control of boost and buck-boost power converters control using method of stable system centre,, Automatica, 39 (2003), 1061. doi: doi:10.1016/S0005-1098(03)00068-2. Google Scholar

[20]

H. Sira-Ramírez, Sliding motions in bilinear switched networks,, IEEE Trans. Circ. Syst., 34 (1987), 1359. Google Scholar

[21]

H. Sira-Ramírez, DC-to-AC power conversion on a 'boost' converter,, Internat. J. Robust Nonlinear Control, 11 (2001), 589. doi: doi:10.1002/rnc.575. Google Scholar

[22]

H. Sira-Ramírez, M. Spinetti-Rivera and E. Fossas, An algebraic parameter estimation approach to the adaptive observer-controller based regulation of the boost converter,, in, (2007), 3367. Google Scholar

[23]

E. D. Sontag, Input to state stability: Basic concepts and results,, in, (2007), 163. Google Scholar

[24]

E. D. Sontag and Y. Wang, New characterizations of input-to-state stability,, IEEE Trans. Automatic Control, 41 (1996), 1283. doi: doi:10.1109/9.536498. Google Scholar

show all references

References:
[1]

F. Amato, C. Cosentino, A. S. Fiorillo and A. Merola, Stabilization of bilinear systems via linear state-feedback control,, IEEE Trans. Circ. Syst.-II, 56 (2009), 76. Google Scholar

[2]

R. O. Cáceres and I. Barbi, A boost DC-AC converter: Analysis, design and experimentation,, IEEE Trans. Power Electronics, 14 (1999), 134. doi: doi:10.1109/63.737601. Google Scholar

[3]

M. Carpita and M. Marchesoni, Experimental study of a power conditioning system using sliding mode control,, IEEE Trans. Power Electronics, 11 (1996), 731. doi: doi:10.1109/63.535405. Google Scholar

[4]

D. Cortés, Jq. Álvarez, J. Álvarez and A. Fradkov, Tracking control of the boost converter,, IEEE Proceedings Control Theory Applications, 151 (2004), 218. doi: doi:10.1049/ip-cta:20040203. Google Scholar

[5]

S. Devasia, D. Chen and B. Paden, Nonlinear inversion-based output tracking,, IEEE Trans. Automatic Control, 41 (1996), 930. doi: doi:10.1109/9.508898. Google Scholar

[6]

D. L. Elliott, "Bilinear Control Systems. Matrices in Action,", Springer, (2009). Google Scholar

[7]

M. Farkas, "Periodic Motions,", Springer-Verlag, (1994). Google Scholar

[8]

E. Fossas and J. M. Olm, Asymptotic tracking in DC-to-DC nonlinear power converters,, Discrete Continuous Dynam. Systems - B, 2 (2002), 295. Google Scholar

[9]

E. Fossas and J. M. Olm, Galerkin method and approximate tracking in a nonminimum phase bilinear system,, Discrete Continuous Dynam. Systems - B, 7 (2007), 53. Google Scholar

[10]

E. Fossas and J. M. Olm, A functional iterative approach to the tracking control of nonminimum phase switched power converters,, Math. Control Signals Syst., 21 (2009), 203. doi: doi:10.1007/s00498-009-0044-5. Google Scholar

[11]

E. Fossas, J. M. Olm, A. Zinober and Y. Shtessel, Galerkin-based sliding mode tracking control of nonminimum phase DC-to-DC power converters,, Internat. J. Robust Nonlinear Control, 17 (2007), 587. doi: doi:10.1002/rnc.1136. Google Scholar

[12]

H. K. Khalil, "Nonlinear Systems,", 3rd edition, (2002). Google Scholar

[13]

R. R. Mohler, "Nonlinear Systems, vol. 2: Applications to Bilinear Control,", Prentice Hall, (1991). Google Scholar

[14]

J. M. Olm, "Asymptotic Tracking with DC-to-DC Bilinear Power Converters,", Ph. D thesis, (2004). Google Scholar

[15]

J. M. Olm, X. Ros-Oton and Y. B. Shtessel, Stable inversion of Abel equations: application to tracking control in DC-DC nonminimum phase boost converters,, Automatica, (2010). doi: doi:10.1109/CDC.2007.4434276. Google Scholar

[16]

A. Pavlov and K. Y. Pettersen, Stable inversion of non-minimum phase nonlinear systems: A convergent systems approach,, in, (2007), 3995. Google Scholar

[17]

A. D. Polyanin, "Handbook of Exact Solutions for Ordinary Differential Equations,", 2nd edition, (2003). Google Scholar

[18]

S. Sastry, "Nonlinear Systems. Analysis, Stability and Control,", Springer-Verlag, (1999). Google Scholar

[19]

Y. Shtessel, A. Zinober and I. Shkolnikov, Sliding mode control of boost and buck-boost power converters control using method of stable system centre,, Automatica, 39 (2003), 1061. doi: doi:10.1016/S0005-1098(03)00068-2. Google Scholar

[20]

H. Sira-Ramírez, Sliding motions in bilinear switched networks,, IEEE Trans. Circ. Syst., 34 (1987), 1359. Google Scholar

[21]

H. Sira-Ramírez, DC-to-AC power conversion on a 'boost' converter,, Internat. J. Robust Nonlinear Control, 11 (2001), 589. doi: doi:10.1002/rnc.575. Google Scholar

[22]

H. Sira-Ramírez, M. Spinetti-Rivera and E. Fossas, An algebraic parameter estimation approach to the adaptive observer-controller based regulation of the boost converter,, in, (2007), 3367. Google Scholar

[23]

E. D. Sontag, Input to state stability: Basic concepts and results,, in, (2007), 163. Google Scholar

[24]

E. D. Sontag and Y. Wang, New characterizations of input-to-state stability,, IEEE Trans. Automatic Control, 41 (1996), 1283. doi: doi:10.1109/9.536498. Google Scholar

[1]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[2]

E. Fossas-Colet, J.M. Olm-Miras. Asymptotic tracking in DC-to-DC nonlinear power converters. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 295-307. doi: 10.3934/dcdsb.2002.2.295

[3]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[4]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[5]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial & Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[6]

Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343

[7]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[8]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019050

[9]

Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035

[10]

Uwe Schäfer, Marco Schnurr. A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data. Journal of Industrial & Management Optimization, 2006, 2 (4) : 425-434. doi: 10.3934/jimo.2006.2.425

[11]

El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations & Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221

[12]

Moussa Balde, Ugo Boscain. Stability of planar switched systems: The nondiagonalizable case. Communications on Pure & Applied Analysis, 2008, 7 (1) : 1-21. doi: 10.3934/cpaa.2008.7.1

[13]

Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497

[14]

Mahdi Khajeh Salehani. Identification of generic stable dynamical systems taking a nonlinear differential approach. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4541-4555. doi: 10.3934/dcdsb.2018175

[15]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[16]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[17]

Tobias Breiten, Karl Kunisch, Laurent Pfeiffer. Numerical study of polynomial feedback laws for a bilinear control problem. Mathematical Control & Related Fields, 2018, 8 (3&4) : 557-582. doi: 10.3934/mcrf.2018023

[18]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[19]

Guoshan Zhang, Shiwei Wang, Yiming Wang, Wanquan Liu. LS-SVM approximate solution for affine nonlinear systems with partially unknown functions. Journal of Industrial & Management Optimization, 2014, 10 (2) : 621-636. doi: 10.3934/jimo.2014.10.621

[20]

M. Motta, C. Sartori. Exit time problems for nonlinear unbounded control systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 137-156. doi: 10.3934/dcds.1999.5.137

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]