• Previous Article
    Approximate tracking of periodic references in a class of bilinear systems via stable inversion
  • DCDS-B Home
  • This Issue
  • Next Article
    Study on the stability and bifurcations of limit cycles in higher-dimensional nonlinear autonomous systems
2011, 15(1): 217-230. doi: 10.3934/dcdsb.2011.15.217

On spatiotemporal pattern formation in a diffusive bimolecular model

1. 

Institute of Nonlinear Complex Systems, College of Science, China Three Gorges University, Yichang, 443002, Hubei, China

2. 

Department of Mathematics, Harbin Engineering University, Harbin, 150001, China

Received  December 2009 Revised  April 2010 Published  October 2010

This paper continues the analysis on a bimolecular autocatalytic reaction-diffusion model with saturation law. An improved result of steady state bifurcation is derived and the effect of various parameters on spatiotemporal patterns is discussed. Our analysis provides a better understanding on the rich spatiotemporal patterns. Some numerical simulations are performed to support the theoretical conclusions.
Citation: Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217
References:
[1]

M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations,, J. Theoret. Biol., 245 (2007), 220. doi: doi:10.1016/j.jtbi.2006.09.036.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM J. Math. Anal., 17 (1986), 1339. doi: doi:10.1137/0517094.

[3]

L. L. Bonilla and M. G. Velarde, Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law,, J. Math. Phys., 20 (1979), 2692. doi: doi:10.1063/1.524034.

[4]

Y. Du, Uniqueness, multiplicity and stability for positive solutions of a pair of reaction-diffusion equations,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 777.

[5]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equations, 144 (1998), 390. doi: doi:10.1006/jdeq.1997.3394.

[6]

Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321. doi: doi:10.1017/S0308210500000895.

[7]

Y. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, in, 48 (2006), 95.

[8]

Y. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model,, Trans. Amer. Math. Soc., 359 (2007), 4557. doi: doi:10.1090/S0002-9947-07-04262-6.

[9]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Reprint of the 1998 edition, (1998).

[10]

J. L. Ibanez and M. G. Velarde, Multiple steady states in a simple reaction-diffusion model with Michaelis-Menten (first-order Hinshelwood-Langmuir) saturation law: The limit of large separation in the two diffusion constants,, J. Math. Phys., 19 (1978), 151. doi: doi:10.1063/1.523532.

[11]

J. Jang, W. M. Ni and M. X. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model,, J. Dynam. Differential Equations, 16 (2004), 297. doi: doi:10.1007/s10884-004-2782-x.

[12]

J. Y. Jin, J. P. Shi, J. J. Wei and F. Q. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction,, submitted for publication., ().

[13]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems,, SIAM J. Math. Anal., 13 (1982), 555. doi: doi:10.1137/0513037.

[14]

R. Peng, J. P. Shi and M. X. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law,, Nonlinearity, 21 (2008), 1471. doi: doi:10.1088/0951-7715/21/7/006.

[15]

R. Peng and J. P. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations, 247 (2009), 866. doi: doi:10.1016/j.jde.2009.03.008.

[16]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487. doi: doi:10.1016/0022-1236(71)90030-9.

[17]

W. H. Ruan, Asymptotic behavior and positive steady-state solutions of a reaction-diffusion model with autocatalysis and saturation law,, Nonlinear Anal: TMA, 21 (1993), 439. doi: doi:10.1016/0362-546X(93)90127-E.

[18]

J. P. Shi, Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models,, Frontier of Mathematics in China, 4 (2009), 407. doi: doi:10.1007/s11464-009-0026-4.

[19]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788. doi: doi:10.1016/j.jde.2008.09.009.

[20]

Y. Su, J. Wei and J. P. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect,, J. Differential Equations, 247 (2009), 1156. doi: doi:10.1016/j.jde.2009.04.017.

[21]

M. X. Wang, Non-constant positive steady states of the Sel'kov model,, J. Differential Equations, 190 (2003), 600. doi: doi:10.1016/S0022-0396(02)00100-6.

[22]

F. Q. Yi, J. X. Liu and J. J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusibve bimolecular model,, Nonl. Anal: RWA, 11 (2010), 3770. doi: doi:10.1016/j.nonrwa.2010.02.007.

[23]

F. Q. Yi, J. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system,, Nonl. Anal: RWA, 9 (2008), 1038. doi: doi:10.1016/j.nonrwa.2010.02.007.

[24]

F. Q. Yi, J. J. Wei, J. P. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system,, Appl. Math. Lett., 22 (2009), 52. doi: doi:10.1016/j.aml.2008.02.003.

[25]

F. Q. Yi, J. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944. doi: doi:10.1016/j.jde.2008.10.024.

show all references

References:
[1]

M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations,, J. Theoret. Biol., 245 (2007), 220. doi: doi:10.1016/j.jtbi.2006.09.036.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM J. Math. Anal., 17 (1986), 1339. doi: doi:10.1137/0517094.

[3]

L. L. Bonilla and M. G. Velarde, Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law,, J. Math. Phys., 20 (1979), 2692. doi: doi:10.1063/1.524034.

[4]

Y. Du, Uniqueness, multiplicity and stability for positive solutions of a pair of reaction-diffusion equations,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 777.

[5]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equations, 144 (1998), 390. doi: doi:10.1006/jdeq.1997.3394.

[6]

Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321. doi: doi:10.1017/S0308210500000895.

[7]

Y. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, in, 48 (2006), 95.

[8]

Y. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model,, Trans. Amer. Math. Soc., 359 (2007), 4557. doi: doi:10.1090/S0002-9947-07-04262-6.

[9]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Reprint of the 1998 edition, (1998).

[10]

J. L. Ibanez and M. G. Velarde, Multiple steady states in a simple reaction-diffusion model with Michaelis-Menten (first-order Hinshelwood-Langmuir) saturation law: The limit of large separation in the two diffusion constants,, J. Math. Phys., 19 (1978), 151. doi: doi:10.1063/1.523532.

[11]

J. Jang, W. M. Ni and M. X. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model,, J. Dynam. Differential Equations, 16 (2004), 297. doi: doi:10.1007/s10884-004-2782-x.

[12]

J. Y. Jin, J. P. Shi, J. J. Wei and F. Q. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction,, submitted for publication., ().

[13]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems,, SIAM J. Math. Anal., 13 (1982), 555. doi: doi:10.1137/0513037.

[14]

R. Peng, J. P. Shi and M. X. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law,, Nonlinearity, 21 (2008), 1471. doi: doi:10.1088/0951-7715/21/7/006.

[15]

R. Peng and J. P. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations, 247 (2009), 866. doi: doi:10.1016/j.jde.2009.03.008.

[16]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487. doi: doi:10.1016/0022-1236(71)90030-9.

[17]

W. H. Ruan, Asymptotic behavior and positive steady-state solutions of a reaction-diffusion model with autocatalysis and saturation law,, Nonlinear Anal: TMA, 21 (1993), 439. doi: doi:10.1016/0362-546X(93)90127-E.

[18]

J. P. Shi, Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models,, Frontier of Mathematics in China, 4 (2009), 407. doi: doi:10.1007/s11464-009-0026-4.

[19]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788. doi: doi:10.1016/j.jde.2008.09.009.

[20]

Y. Su, J. Wei and J. P. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect,, J. Differential Equations, 247 (2009), 1156. doi: doi:10.1016/j.jde.2009.04.017.

[21]

M. X. Wang, Non-constant positive steady states of the Sel'kov model,, J. Differential Equations, 190 (2003), 600. doi: doi:10.1016/S0022-0396(02)00100-6.

[22]

F. Q. Yi, J. X. Liu and J. J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusibve bimolecular model,, Nonl. Anal: RWA, 11 (2010), 3770. doi: doi:10.1016/j.nonrwa.2010.02.007.

[23]

F. Q. Yi, J. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system,, Nonl. Anal: RWA, 9 (2008), 1038. doi: doi:10.1016/j.nonrwa.2010.02.007.

[24]

F. Q. Yi, J. J. Wei, J. P. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system,, Appl. Math. Lett., 22 (2009), 52. doi: doi:10.1016/j.aml.2008.02.003.

[25]

F. Q. Yi, J. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944. doi: doi:10.1016/j.jde.2008.10.024.

[1]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[2]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[3]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[4]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[5]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure & Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

[6]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

[7]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[8]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[9]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[10]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[11]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[12]

Jun Zhou. Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack. Mathematical Biosciences & Engineering, 2016, 13 (4) : 857-885. doi: 10.3934/mbe.2016021

[13]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure & Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[14]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[15]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[16]

Youcef Mammeri, Damien Sellier. A surface model of nonlinear, non-steady-state phloem transport. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1055-1069. doi: 10.3934/mbe.2017055

[17]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[18]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[19]

Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 239-252. doi: 10.3934/mbe.2011.8.239

[20]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]