January  2011, 15(1): 61-74. doi: 10.3934/dcdsb.2011.15.61

Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays

1. 

Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555

2. 

Basque Center for Applied Mathematics, Bizkaia Technology Park, Building 500 E-48160 Derio, Spain

3. 

Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555

Received  October 2009 Revised  April 2010 Published  October 2010

In this paper, we establish the global asymptotic stability of equilibria for an SIR model of infectious diseases with distributed time delays governed by a wide class of nonlinear incidence rates. We obtain the global properties of the model by proving the permanence and constructing a suitable Lyapunov functional. Under some suitable assumptions on the nonlinear term in the incidence rate, the global dynamics of the model is completely determined by the basic reproduction number $R_0$ and the distributed delays do not influence the global dynamics of the model.
Citation: Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61
References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I,, Nature, 280 (1979), 361. doi: doi:10.1038/280361a0. Google Scholar

[2]

E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic models with varying population size,, Nonlinear Anal., 28 (1997), 1909. doi: doi:10.1016/S0362-546X(96)00035-1. Google Scholar

[3]

G. C. Brown and R. Hasibuan, Conidial discharge and transmission efficiency of "Neozygites floridana," an entomopathogenic fungus infeccting two-spotted spider mites under laboratory conditions,, J. Invertebr. Pathol., 65 (1995), 10. doi: doi:10.1006/jipa.1995.1002. Google Scholar

[4]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: doi:10.1016/0025-5564(78)90006-8. Google Scholar

[5]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mountain J. Math., 9 (1979), 31. doi: doi:10.1216/RMJ-1979-9-1-31. Google Scholar

[6]

J. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993). Google Scholar

[7]

H. W. Hethcote, Qualitative analyses of communicable disease models,, Math. Biosci. 28 (1976), 28 (1976), 335. doi: doi:10.1016/0025-5564(76)90132-2. Google Scholar

[8]

H. W. Hethcote, The Mathematics of Infectious Diseases,, SIAM Rev., 42 (2000), 599. Google Scholar

[9]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: doi:10.1007/s11538-009-9487-6. Google Scholar

[10]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, Math. Med. Biol., 22 (2005), 113. doi: doi:10.1093/imammb/dqi001. Google Scholar

[11]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: doi:10.1007/s11538-005-9037-9. Google Scholar

[12]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: doi:10.1007/s11538-007-9196-y. Google Scholar

[13]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Academic Press, (1993). Google Scholar

[14]

J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications,", Mathematics in Science and Engineering, 4 (1961). Google Scholar

[15]

W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed delays,, Tohoku. Math. J., 54 (2002), 581. doi: doi:10.2748/tmj/1113247650. Google Scholar

[16]

W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay,, Appl. Math. Lett., 17 (2004), 1141. doi: doi:10.1016/j.aml.2003.11.005. Google Scholar

[17]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete,, Nonl. Anal. RWA., 11 (2010), 55. doi: doi:10.1016/j.nonrwa.2008.10.014. Google Scholar

[18]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonl. Anal. RWA., 11 (2010), 3106. doi: doi:10.1016/j.nonrwa.2009.11.005. Google Scholar

[19]

M. Song, W. Ma and Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate,, J. Comp. Appl. Math., 201 (2007), 389. doi: doi:10.1016/j.cam.2005.12.039. Google Scholar

[20]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay $SIR$ epidemic model with finite incubation times,, Nonlinear Anal., 42 (2000), 931. doi: doi:10.1016/S0362-546X(99)00138-8. Google Scholar

[21]

W. Wang, Global behavior of an SEIRS epidemic model with time delays,, Appl. Math. Lett., 15 (2002), 423. doi: doi:10.1016/S0893-9659(01)00153-7. Google Scholar

[22]

R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay,, Nonl. Anal. RWA., 10 (2009), 3175. doi: doi:10.1016/j.nonrwa.2008.10.013. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I,, Nature, 280 (1979), 361. doi: doi:10.1038/280361a0. Google Scholar

[2]

E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic models with varying population size,, Nonlinear Anal., 28 (1997), 1909. doi: doi:10.1016/S0362-546X(96)00035-1. Google Scholar

[3]

G. C. Brown and R. Hasibuan, Conidial discharge and transmission efficiency of "Neozygites floridana," an entomopathogenic fungus infeccting two-spotted spider mites under laboratory conditions,, J. Invertebr. Pathol., 65 (1995), 10. doi: doi:10.1006/jipa.1995.1002. Google Scholar

[4]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: doi:10.1016/0025-5564(78)90006-8. Google Scholar

[5]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mountain J. Math., 9 (1979), 31. doi: doi:10.1216/RMJ-1979-9-1-31. Google Scholar

[6]

J. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993). Google Scholar

[7]

H. W. Hethcote, Qualitative analyses of communicable disease models,, Math. Biosci. 28 (1976), 28 (1976), 335. doi: doi:10.1016/0025-5564(76)90132-2. Google Scholar

[8]

H. W. Hethcote, The Mathematics of Infectious Diseases,, SIAM Rev., 42 (2000), 599. Google Scholar

[9]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: doi:10.1007/s11538-009-9487-6. Google Scholar

[10]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, Math. Med. Biol., 22 (2005), 113. doi: doi:10.1093/imammb/dqi001. Google Scholar

[11]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: doi:10.1007/s11538-005-9037-9. Google Scholar

[12]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: doi:10.1007/s11538-007-9196-y. Google Scholar

[13]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Academic Press, (1993). Google Scholar

[14]

J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications,", Mathematics in Science and Engineering, 4 (1961). Google Scholar

[15]

W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed delays,, Tohoku. Math. J., 54 (2002), 581. doi: doi:10.2748/tmj/1113247650. Google Scholar

[16]

W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay,, Appl. Math. Lett., 17 (2004), 1141. doi: doi:10.1016/j.aml.2003.11.005. Google Scholar

[17]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete,, Nonl. Anal. RWA., 11 (2010), 55. doi: doi:10.1016/j.nonrwa.2008.10.014. Google Scholar

[18]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonl. Anal. RWA., 11 (2010), 3106. doi: doi:10.1016/j.nonrwa.2009.11.005. Google Scholar

[19]

M. Song, W. Ma and Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate,, J. Comp. Appl. Math., 201 (2007), 389. doi: doi:10.1016/j.cam.2005.12.039. Google Scholar

[20]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay $SIR$ epidemic model with finite incubation times,, Nonlinear Anal., 42 (2000), 931. doi: doi:10.1016/S0362-546X(99)00138-8. Google Scholar

[21]

W. Wang, Global behavior of an SEIRS epidemic model with time delays,, Appl. Math. Lett., 15 (2002), 423. doi: doi:10.1016/S0893-9659(01)00153-7. Google Scholar

[22]

R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay,, Nonl. Anal. RWA., 10 (2009), 3175. doi: doi:10.1016/j.nonrwa.2008.10.013. Google Scholar

[1]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[2]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[3]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[4]

Jing Hui, Lansun Chen. Impulsive vaccination of sir epidemic models with nonlinear incidence rates. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 595-605. doi: 10.3934/dcdsb.2004.4.595

[5]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[6]

Attila Dénes, Gergely Röst. Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1101-1117. doi: 10.3934/dcdsb.2016.21.1101

[7]

Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016

[8]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[9]

Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785

[10]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[11]

Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93

[12]

Chengxia Lei, Fujun Li, Jiang Liu. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4499-4517. doi: 10.3934/dcdsb.2018173

[13]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[14]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[15]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[16]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[17]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[18]

Bin Fang, Xue-Zhi Li, Maia Martcheva, Li-Ming Cai. Global stability for a heroin model with two distributed delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 715-733. doi: 10.3934/dcdsb.2014.19.715

[19]

Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

[20]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]