• Previous Article
    Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis
  • DCDS-B Home
  • This Issue
  • Next Article
    Determination of effective diffusion coefficients of drug delivery devices by a state observer approach
2011, 16(4): 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

An optimal PID controller design for nonlinear constrained optimal control problems

1. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Building 2F, Technology Park of Harbin Institute of Technology, Harbin, 150001, China

2. 

Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U 1987, Perth, W.A. 6845

3. 

School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005

4. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology 210, Building 2F, Technology Park of Harbin Institute of Technology, Harbin, 150001, China

Received  September 2010 Revised  March 2011 Published  August 2011

In this paper, we consider a class of optimal PID control problems subject to continuous inequality constraints and terminal equality constraint. By applying the constraint transcription method and a local smoothing technique to these continuous inequality constraint functions, we construct the corresponding smooth approximate functions. We use the concept of the penalty function to append these smooth approximate functions to the cost function, forming a new cost function. Then, the constrained optimal PID control problem is approximated by a sequence of optimal parameter selection problems subject to only terminal equality constraint. Each of these optimal parameter selection problems can be viewed and hence solved as a nonlinear optimization problem. The gradient formulas of the new appended cost function and the terminal equality constraint function are derived, and a reliable computation algorithm is given. The method proposed is used to solve a ship steering control problem.
Citation: Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101
References:
[1]

J. Van Amerongen, Adaptive steering of ships-a model reference approach,, Automatica, 20 (1984), 3. doi: 10.1016/0005-1098(84)90060-8.

[2]

M. I. Bech and L. Wangner Smitt, "Analogue Simulation of Ship Manoeuvres,", Hydro and Aerodynamics Lab. Report No. Hy-14, (1969).

[3]

D. L. Brooke, "The Design of a New Automaticpilot for the Comerical Ship,", First IFAC/IFIP Symosium on Ship Operation Automation, (1973).

[4]

J. Du, C. Guo, S. Yu and Y. Zhao, Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient,, IEEE Journal of Oceanic Engineering, 32 (2007), 346.

[5]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3, Version 3: Optimal Control Software, Theory and User Manual,", 1991., ().

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 26 (1990), 371. doi: 10.1016/0005-1098(90)90131-Z.

[7]

C. C. Lim and W. Forsythe, Autopilot for ship control,, IEE Procedings, 130 (1983), 281.

[8]

C. Y. Liu, Z. H. Gong and E. M. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture,, Journal of Industrial and Management Optimization, 5 (2009), 835. doi: 10.3934/jimo.2009.5.835.

[9]

R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of swtiched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455. doi: 10.1109/TAC.2009.2029310.

[10]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250. doi: 10.1016/j.automatica.2009.05.029.

[11]

V. Rehbock, C. C. Lim and K. L. Teo, A stable constrained optimal model following controller for discrete-time nonlinear systems affine in control,, Control Theory and Advanced Technology, 10 (1994), 793.

[12]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach for Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).

[13]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, J. Austral. Math. Soc. Ser. B, 40 (1999), 314. doi: 10.1017/S0334270000010936.

[14]

K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering,, Journal of Optimization Theory and Applicaitons, 56 (1988), 145. doi: 10.1007/BF00938530.

[15]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 29 (1993), 789. doi: 10.1016/0005-1098(93)90076-6.

[16]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435. doi: 10.3934/jimo.2006.2.435.

show all references

References:
[1]

J. Van Amerongen, Adaptive steering of ships-a model reference approach,, Automatica, 20 (1984), 3. doi: 10.1016/0005-1098(84)90060-8.

[2]

M. I. Bech and L. Wangner Smitt, "Analogue Simulation of Ship Manoeuvres,", Hydro and Aerodynamics Lab. Report No. Hy-14, (1969).

[3]

D. L. Brooke, "The Design of a New Automaticpilot for the Comerical Ship,", First IFAC/IFIP Symosium on Ship Operation Automation, (1973).

[4]

J. Du, C. Guo, S. Yu and Y. Zhao, Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient,, IEEE Journal of Oceanic Engineering, 32 (2007), 346.

[5]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3, Version 3: Optimal Control Software, Theory and User Manual,", 1991., ().

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 26 (1990), 371. doi: 10.1016/0005-1098(90)90131-Z.

[7]

C. C. Lim and W. Forsythe, Autopilot for ship control,, IEE Procedings, 130 (1983), 281.

[8]

C. Y. Liu, Z. H. Gong and E. M. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture,, Journal of Industrial and Management Optimization, 5 (2009), 835. doi: 10.3934/jimo.2009.5.835.

[9]

R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of swtiched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455. doi: 10.1109/TAC.2009.2029310.

[10]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250. doi: 10.1016/j.automatica.2009.05.029.

[11]

V. Rehbock, C. C. Lim and K. L. Teo, A stable constrained optimal model following controller for discrete-time nonlinear systems affine in control,, Control Theory and Advanced Technology, 10 (1994), 793.

[12]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach for Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).

[13]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, J. Austral. Math. Soc. Ser. B, 40 (1999), 314. doi: 10.1017/S0334270000010936.

[14]

K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering,, Journal of Optimization Theory and Applicaitons, 56 (1988), 145. doi: 10.1007/BF00938530.

[15]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 29 (1993), 789. doi: 10.1016/0005-1098(93)90076-6.

[16]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435. doi: 10.3934/jimo.2006.2.435.

[1]

Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571

[2]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[3]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[4]

Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585

[5]

John T. Betts, Stephen L. Campbell, Claire Digirolamo. Initial guess sensitivity in Computational optimal control problems. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019031

[6]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[7]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[8]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[9]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[10]

Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016

[11]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[12]

Jianling Li, Chunting Lu, Youfang Zeng. A smooth QP-free algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 115-126. doi: 10.3934/naco.2015.5.115

[13]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[14]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[15]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[16]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[17]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[18]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[19]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[20]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]