2011, 16(1): 239-263. doi: 10.3934/dcdsb.2011.16.239

Stabilization via symmetry switching in hybrid dynamical systems

1. 

Chair of Applied Mathematics, University of Paderborn, D-33098 Paderborn, Germany, Germany

Received  June 2010 Revised  February 2011 Published  April 2011

With a view to stabilization issues of hybrid systems exhibiting a regular structure in terms of symmetry, we introduce the concept of symmetry switching and relate symmetry-induced switching strategies to the asymptotic stability of switched linear systems. To this end, a general notion of hybrid symmetries for switched systems is established whereupon orbital switching is treated which builds on the existence of hybrid symmetries. In the main part, we formulate and prove sufficient conditions for asymptotic stability under slow symmetry switching. As an example of both theoretical and practical interest, we examine time-varying networks of dynamical systems and perform stabilization by means of orbital switching. Behind all that, this work is meant to provide the groundwork for the treatment of equivariant bifurcation phenomena of hybrid systems.
Citation: Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239
References:
[1]

M. Dellnitz and S. Hage-Packhäuser, A global symmetry framework for Hybrid dynamical systems,, preprint., ().

[2]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: I. Wreath products,, Nonlinearity, 9 (1996), 559. doi: 10.1088/0951-7715/9/2/016.

[3]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: II. Direct products,, Nonlinearity, 9 (1996), 575. doi: 10.1088/0951-7715/9/2/017.

[4]

B. Fiedler, "Global Bifurcation of Periodic Solutions with Symmetry,", volume $1309$ of Lecture Notes in Mathematics, (1988).

[5]

M. Golubitsky and I. Stewart, "The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,", volume $200$ of Progress in Mathematics, (2002).

[6]

M. Golubitsky, I. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory Vol. II,", volume $69$ of Applied Mathematical Sciences, (1988).

[7]

M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: The groupoid formalism,, Bulletin of the American Mathematical Society, 43 (2006), 305. doi: 10.1090/S0273-0979-06-01108-6.

[8]

L. Gurvits, Stability of discrete linear inclusion,, Linear Algebra Appl., 231 (1995), 47. doi: 10.1016/0024-3795(95)90006-3.

[9]

P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry,", volume II of Applied Mathematical Sciences, (1996).

[10]

J. S. W. Lamb, k-symmetry and return maps of spacetime symmetric flows,, Nonlinearity, 11 (1998), 601. doi: 10.1088/0951-7715/11/3/011.

[11]

D. Liberzon, "On New Sufficient Conditions for Stability of Switched Linear Systems,", Proceedings of the 2009 European Control Conference, (2009).

[12]

D. Liberzon, "Switching in Systems and Control,", Systems and Control: Foundations and Applications Birkhäuser, (2003).

[13]

J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang and S. Sastry, Dynamical properties of Hybrid automata,, IEEE Transactions on Automatic Control, 48 (2003), 2. doi: 10.1109/TAC.2002.806650.

[14]

J. Lygeros, K. H. Johansson, S. Sastry and M. Egerstedt, On the existence of executions of Hybrid automata,, Proceedings of the 38$^{th}$ IEEE Conference on Decision and Control 1999, 3 (1999), 2249.

[15]

S. N. Simic, K. H. Johansson, J. Lygeros and S. Sastry, Towards a geometric theory of Hybrid systems,, Dynamics of Continuous, 12 (2005), 649.

[16]

A. van der Schaft and H. Schumacher, "An Introduction to Hybrid Dynamical Systems,", Number 251 in Lecture Notes in Control and Information Sciences Springer-Verlag, (2000).

show all references

References:
[1]

M. Dellnitz and S. Hage-Packhäuser, A global symmetry framework for Hybrid dynamical systems,, preprint., ().

[2]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: I. Wreath products,, Nonlinearity, 9 (1996), 559. doi: 10.1088/0951-7715/9/2/016.

[3]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: II. Direct products,, Nonlinearity, 9 (1996), 575. doi: 10.1088/0951-7715/9/2/017.

[4]

B. Fiedler, "Global Bifurcation of Periodic Solutions with Symmetry,", volume $1309$ of Lecture Notes in Mathematics, (1988).

[5]

M. Golubitsky and I. Stewart, "The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,", volume $200$ of Progress in Mathematics, (2002).

[6]

M. Golubitsky, I. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory Vol. II,", volume $69$ of Applied Mathematical Sciences, (1988).

[7]

M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: The groupoid formalism,, Bulletin of the American Mathematical Society, 43 (2006), 305. doi: 10.1090/S0273-0979-06-01108-6.

[8]

L. Gurvits, Stability of discrete linear inclusion,, Linear Algebra Appl., 231 (1995), 47. doi: 10.1016/0024-3795(95)90006-3.

[9]

P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry,", volume II of Applied Mathematical Sciences, (1996).

[10]

J. S. W. Lamb, k-symmetry and return maps of spacetime symmetric flows,, Nonlinearity, 11 (1998), 601. doi: 10.1088/0951-7715/11/3/011.

[11]

D. Liberzon, "On New Sufficient Conditions for Stability of Switched Linear Systems,", Proceedings of the 2009 European Control Conference, (2009).

[12]

D. Liberzon, "Switching in Systems and Control,", Systems and Control: Foundations and Applications Birkhäuser, (2003).

[13]

J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang and S. Sastry, Dynamical properties of Hybrid automata,, IEEE Transactions on Automatic Control, 48 (2003), 2. doi: 10.1109/TAC.2002.806650.

[14]

J. Lygeros, K. H. Johansson, S. Sastry and M. Egerstedt, On the existence of executions of Hybrid automata,, Proceedings of the 38$^{th}$ IEEE Conference on Decision and Control 1999, 3 (1999), 2249.

[15]

S. N. Simic, K. H. Johansson, J. Lygeros and S. Sastry, Towards a geometric theory of Hybrid systems,, Dynamics of Continuous, 12 (2005), 649.

[16]

A. van der Schaft and H. Schumacher, "An Introduction to Hybrid Dynamical Systems,", Number 251 in Lecture Notes in Control and Information Sciences Springer-Verlag, (2000).

[1]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[2]

Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483

[3]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019028

[4]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[5]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[6]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[7]

B. Cantó, C. Coll, A. Herrero, E. Sánchez, N. Thome. Pole-assignment of discrete time-delay systems with symmetries. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 641-649. doi: 10.3934/dcdsb.2006.6.641

[8]

Andrey Tsiganov. Poisson structures for two nonholonomic systems with partially reduced symmetries. Journal of Geometric Mechanics, 2014, 6 (3) : 417-440. doi: 10.3934/jgm.2014.6.417

[9]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[10]

Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312

[11]

Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006

[12]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[13]

Fatiha Alabau-Boussouira, Piermarco Cannarsa, Roberto Guglielmi. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Mathematical Control & Related Fields, 2011, 1 (4) : 413-436. doi: 10.3934/mcrf.2011.1.413

[14]

David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321

[15]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[16]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[17]

Simon Hochgerner, Luis García-Naranjo. $G$-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball. Journal of Geometric Mechanics, 2009, 1 (1) : 35-53. doi: 10.3934/jgm.2009.1.35

[18]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[19]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[20]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]