-
Previous Article
Vanishing singularity in hard impacting systems
- DCDS-B Home
- This Issue
-
Next Article
A rigorous derivation of hemitropy in nonlinearly elastic rods
Feedback stabilization methods for the numerical solution of ordinary differential equations
1. | Department of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece |
2. | Mathematisches Institute, Universität Bayreuth, 95440 Bayreuth |
References:
[1] |
Z. Artstein, Stabilization with relaxed controls,, Nonlinear Anal., 7 (1983), 1163.
doi: 10.1016/0362-546X(83)90049-4. |
[2] |
P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,'', Progress in Nonlinear Differential Equations and their Applications, (2004).
|
[3] |
S. Dashkovskiy, B. S. Rüffer and F. R. Wirth, An ISS small gain theorem for general networks,, Math. Control Signals Systems, 19 (2007), 93.
doi: 10.1007/s00498-007-0014-8. |
[4] |
R. A. Freeman and P. V. Kokotović, "Robust Nonlinear Control Design - State-Space and Lyapunov Techniques,'', Birkhäuser, (1996).
|
[5] |
B. M. Garay and K. Lee, Attractors under discretization with variable stepsize,, Discrete Contin. Dyn. Syst., 13 (2005), 827.
doi: 10.3934/dcds.2005.13.827. |
[6] |
C. W. Gear and I. G. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum,, SIAM J. Sci. Comput., 24 (2003), 1091.
doi: 10.1137/S1064827501388157. |
[7] |
C. W. Gear and I. G. Kevrekidis, Telescopic projective methods for parabolic differential equations,, J. Comput. Phys., 187 (2003), 95.
doi: 10.1016/S0021-9991(03)00082-2. |
[8] |
P. Giesl, "Construction of Global Lyapunov Functions Using Radial Basis Functions,'' volume 1904 of "Lecture Notes in Mathematics,", Springer, (2007).
|
[9] |
B. S. Goh, Algorithms for unconstrained optimization problems via control theory,, J. Optim. Theory Appl., 92 (1997), 581.
doi: 10.1023/A:1022607507153. |
[10] |
V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions,, BIT, 45 (2005), 709.
doi: 10.1007/s10543-005-0034-z. |
[11] |
L. Grüne, "Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization,'' volume 1783 of "Lecture Notes in Mathematics,", Springer, (2002).
|
[12] |
L. Grüne, Attraction rates, robustness, and discretization of attractors,, SIAM J. Numer. Anal., 41 (2003), 2096.
doi: 10.1137/S003614290139411X. |
[13] |
L. Grüne, E. D. Sontag and F. R. Wirth, Asymptotic stability equals exponential stability, and ISS equals finite energy gain-if you twist your eyes,, Syst. Control Lett., 38 (1999), 127.
|
[14] |
K. Gustafsson, Control-theoretic techniques for stepsize selection in explicit Runge-Kutta methods,, ACM Trans. Math. Software, 17 (1991), 533.
doi: 10.1145/210232.210242. |
[15] |
K. Gustafsson, Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods,, ACM Trans. Math. Software, 20 (1994), 496.
doi: 10.1145/198429.198437. |
[16] |
K. Gustafsson, M. Lundh and G. Söderlind, A {PI stepsize control for the numerical solution of ordinary differential equations},, BIT, 28 (1988), 270.
|
[17] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,'', Springer, (2006).
|
[18] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I Nonstiff Problems,'', Springer, (1993).
|
[19] |
E. Hairer and G. Wanner, "Solving Ordinary Differential Equations. {II} Stiff and Differential-Algebraic Problems,'', Springer, (1996).
|
[20] |
Z.-P. Jiang, A. R. Teel and L. Praly, Small-gain theorem for ISS systems and applications,, Math. Control Signals Systems, 7 (1994), 95.
doi: 10.1007/BF01211469. |
[21] |
I. Karafyllis, Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis,, IMA J. Math. Control Inform., 23 (2006), 11.
doi: 10.1093/imamci/dni037. |
[22] |
I. Karafyllis, A system-theoretic framework for a wide class of systems. I, Applications to numerical analysis,, J. Math. Anal. Appl., 328 (2007), 876.
doi: 10.1016/j.jmaa.2006.05.059. |
[23] |
I. Karafyllis and Z.-P. Jiang, A small-gain theorem for a wide class of feedback systems with control applications,, SIAM J. Control Optim., 46 (2007), 1483.
doi: 10.1137/060669310. |
[24] |
I. Karafyllis and Z.-P. Jiang, A vector small-gain theorem for general nonlinear control systems,, In, (2009), 7996. Google Scholar |
[25] |
H. K. Khalil, "Nonlinear Systems,'', Prentice Hall, (2002).
|
[26] |
P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations,, SIAM J. Numer. Anal., 23 (1986), 986.
doi: 10.1137/0723066. |
[27] |
P. E. Kloeden and B. Schmalfuss, Lyapunov functions and attractors under variable time-step discretization,, Discrete Contin. Dynam. Systems, 2 (1996), 163.
doi: 10.3934/dcds.1996.2.163. |
[28] |
V. Lakshmikantham and D. Trigiante, "Theory of Difference Equations: Numerical Methods and Applications,'', Marcel Dekker, (2002).
|
[29] |
H. Lamba, Dynamical systems and adaptive timestepping in ODE solvers, , BIT, 40 (2000), 314.
doi: 10.1023/A:1022395124683. |
[30] |
Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability,, SIAM J. Control Optim., 34 (1996), 124.
doi: 10.1137/S0363012993259981. |
[31] |
J. Peng, Z.-B. Xu, H. Qiao and B. Zhang, A critical analysis on global convergence of Hopfield-type neural networks,, IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), 804.
doi: 10.1109/TCSI.2005.844366. |
[32] |
E. D. Sontag, Smooth stabilization implies coprime factorization,, IEEE Trans. Automat. Control, 34 (1989), 435.
doi: 10.1109/9.28018. |
[33] |
E. D. Sontag, A "universal'' construction of Artstein's theorem on nonlinear stabilization,, Systems Control Lett., 13 (1989), 117.
|
[34] |
E. D. Sontag, "Mathematical Control Theory,'', Springer, (1998).
|
[35] |
A. M. Stuart and A. R. Humphries, "Dynamical Systems And Numerical Analysis,'', Cambridge University Press, (1996).
|
[36] |
A. R. Teel, Input-to-state stability and the nonlinear small gain theorem,, Preprint, (2005). Google Scholar |
[37] |
Y. Xia and J. Wang, A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints,, IEEE Trans. Circuits Syst., 51 (2004), 1385.
doi: 10.1109/TCSI.2004.830694. |
[38] |
H. Yamashita, A differential equation approach to nonlinear programming,, Math. Programming, 18 (1980), 155.
doi: 10.1007/BF01588311. |
[39] |
L. Zhou, Y. Wu, L. Zhang and G. Zhang, Convergence analysis of a differential equation approach for solving nonlinear programming problems,, Appl. Math. Comput., 184 (2007), 789.
doi: 10.1016/j.amc.2006.05.190. |
show all references
References:
[1] |
Z. Artstein, Stabilization with relaxed controls,, Nonlinear Anal., 7 (1983), 1163.
doi: 10.1016/0362-546X(83)90049-4. |
[2] |
P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,'', Progress in Nonlinear Differential Equations and their Applications, (2004).
|
[3] |
S. Dashkovskiy, B. S. Rüffer and F. R. Wirth, An ISS small gain theorem for general networks,, Math. Control Signals Systems, 19 (2007), 93.
doi: 10.1007/s00498-007-0014-8. |
[4] |
R. A. Freeman and P. V. Kokotović, "Robust Nonlinear Control Design - State-Space and Lyapunov Techniques,'', Birkhäuser, (1996).
|
[5] |
B. M. Garay and K. Lee, Attractors under discretization with variable stepsize,, Discrete Contin. Dyn. Syst., 13 (2005), 827.
doi: 10.3934/dcds.2005.13.827. |
[6] |
C. W. Gear and I. G. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum,, SIAM J. Sci. Comput., 24 (2003), 1091.
doi: 10.1137/S1064827501388157. |
[7] |
C. W. Gear and I. G. Kevrekidis, Telescopic projective methods for parabolic differential equations,, J. Comput. Phys., 187 (2003), 95.
doi: 10.1016/S0021-9991(03)00082-2. |
[8] |
P. Giesl, "Construction of Global Lyapunov Functions Using Radial Basis Functions,'' volume 1904 of "Lecture Notes in Mathematics,", Springer, (2007).
|
[9] |
B. S. Goh, Algorithms for unconstrained optimization problems via control theory,, J. Optim. Theory Appl., 92 (1997), 581.
doi: 10.1023/A:1022607507153. |
[10] |
V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions,, BIT, 45 (2005), 709.
doi: 10.1007/s10543-005-0034-z. |
[11] |
L. Grüne, "Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization,'' volume 1783 of "Lecture Notes in Mathematics,", Springer, (2002).
|
[12] |
L. Grüne, Attraction rates, robustness, and discretization of attractors,, SIAM J. Numer. Anal., 41 (2003), 2096.
doi: 10.1137/S003614290139411X. |
[13] |
L. Grüne, E. D. Sontag and F. R. Wirth, Asymptotic stability equals exponential stability, and ISS equals finite energy gain-if you twist your eyes,, Syst. Control Lett., 38 (1999), 127.
|
[14] |
K. Gustafsson, Control-theoretic techniques for stepsize selection in explicit Runge-Kutta methods,, ACM Trans. Math. Software, 17 (1991), 533.
doi: 10.1145/210232.210242. |
[15] |
K. Gustafsson, Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods,, ACM Trans. Math. Software, 20 (1994), 496.
doi: 10.1145/198429.198437. |
[16] |
K. Gustafsson, M. Lundh and G. Söderlind, A {PI stepsize control for the numerical solution of ordinary differential equations},, BIT, 28 (1988), 270.
|
[17] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,'', Springer, (2006).
|
[18] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I Nonstiff Problems,'', Springer, (1993).
|
[19] |
E. Hairer and G. Wanner, "Solving Ordinary Differential Equations. {II} Stiff and Differential-Algebraic Problems,'', Springer, (1996).
|
[20] |
Z.-P. Jiang, A. R. Teel and L. Praly, Small-gain theorem for ISS systems and applications,, Math. Control Signals Systems, 7 (1994), 95.
doi: 10.1007/BF01211469. |
[21] |
I. Karafyllis, Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis,, IMA J. Math. Control Inform., 23 (2006), 11.
doi: 10.1093/imamci/dni037. |
[22] |
I. Karafyllis, A system-theoretic framework for a wide class of systems. I, Applications to numerical analysis,, J. Math. Anal. Appl., 328 (2007), 876.
doi: 10.1016/j.jmaa.2006.05.059. |
[23] |
I. Karafyllis and Z.-P. Jiang, A small-gain theorem for a wide class of feedback systems with control applications,, SIAM J. Control Optim., 46 (2007), 1483.
doi: 10.1137/060669310. |
[24] |
I. Karafyllis and Z.-P. Jiang, A vector small-gain theorem for general nonlinear control systems,, In, (2009), 7996. Google Scholar |
[25] |
H. K. Khalil, "Nonlinear Systems,'', Prentice Hall, (2002).
|
[26] |
P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations,, SIAM J. Numer. Anal., 23 (1986), 986.
doi: 10.1137/0723066. |
[27] |
P. E. Kloeden and B. Schmalfuss, Lyapunov functions and attractors under variable time-step discretization,, Discrete Contin. Dynam. Systems, 2 (1996), 163.
doi: 10.3934/dcds.1996.2.163. |
[28] |
V. Lakshmikantham and D. Trigiante, "Theory of Difference Equations: Numerical Methods and Applications,'', Marcel Dekker, (2002).
|
[29] |
H. Lamba, Dynamical systems and adaptive timestepping in ODE solvers, , BIT, 40 (2000), 314.
doi: 10.1023/A:1022395124683. |
[30] |
Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability,, SIAM J. Control Optim., 34 (1996), 124.
doi: 10.1137/S0363012993259981. |
[31] |
J. Peng, Z.-B. Xu, H. Qiao and B. Zhang, A critical analysis on global convergence of Hopfield-type neural networks,, IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), 804.
doi: 10.1109/TCSI.2005.844366. |
[32] |
E. D. Sontag, Smooth stabilization implies coprime factorization,, IEEE Trans. Automat. Control, 34 (1989), 435.
doi: 10.1109/9.28018. |
[33] |
E. D. Sontag, A "universal'' construction of Artstein's theorem on nonlinear stabilization,, Systems Control Lett., 13 (1989), 117.
|
[34] |
E. D. Sontag, "Mathematical Control Theory,'', Springer, (1998).
|
[35] |
A. M. Stuart and A. R. Humphries, "Dynamical Systems And Numerical Analysis,'', Cambridge University Press, (1996).
|
[36] |
A. R. Teel, Input-to-state stability and the nonlinear small gain theorem,, Preprint, (2005). Google Scholar |
[37] |
Y. Xia and J. Wang, A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints,, IEEE Trans. Circuits Syst., 51 (2004), 1385.
doi: 10.1109/TCSI.2004.830694. |
[38] |
H. Yamashita, A differential equation approach to nonlinear programming,, Math. Programming, 18 (1980), 155.
doi: 10.1007/BF01588311. |
[39] |
L. Zhou, Y. Wu, L. Zhang and G. Zhang, Convergence analysis of a differential equation approach for solving nonlinear programming problems,, Appl. Math. Comput., 184 (2007), 789.
doi: 10.1016/j.amc.2006.05.190. |
[1] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[3] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[4] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[5] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[6] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[7] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[8] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[9] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[10] |
Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021006 |
[11] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[12] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[13] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[14] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[15] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[16] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[17] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[18] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[19] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[20] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]