July  2011, 16(1): 319-332. doi: 10.3934/dcdsb.2011.16.319

Vanishing singularity in hard impacting systems

1. 

Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, United States

2. 

Department of Physical Sciences, Indian Institute of Science Education & Research, Mohanpur-741252, Nadia, West Bengal, India

3. 

School of Electrical, Electronic and Computer Engineering, Newcastle University, NE1 7RU, England, United Kingdom

Received  February 2010 Revised  June 2010 Published  April 2011

It is known that the Jacobian of the discrete-time map of an impact oscillator in the neighborhood of a grazing orbit depends on the square-root of the distance the mass would have gone beyond the position of the wall if the wall were not there. This results in an infinite stretching of the phase space, known as the square-root singularity. In this paper we look closer into the Jacobian matrix and find out the behavior of its two parameters---the trace and the determinant, across the grazing event. We show that the determinant of the matrix remains invariant in the neighborhood of a grazing orbit, and that the singularity appears only in the trace of the matrix. Investigating the character of the trace, we show that the singularity disappears if the damped frequency of the oscillator is an integral multiple of half of the forcing frequency.
Citation: Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319
References:
[1]

S. W. Shaw and P. J. Holmes, A periodically forced piecewise linear oscillator,, Journal of Sound & Vibration, 90 (1983), 129.  doi: 10.1016/0022-460X(83)90407-8.  Google Scholar

[2]

F. Peterka and J. Vacik, Transition to chaotic motion in mechanical systems with impacts,, Journal of Sound and Vibration, 154 (1992), 95.  doi: 10.1016/0022-460X(92)90406-N.  Google Scholar

[3]

B. Blazejczyk-Okolewska and T. Kapitaniak, Co-existing attractors of impact oscillator,, Chaos, 9 (1998), 1439.  doi: 10.1016/S0960-0779(98)00164-7.  Google Scholar

[4]

S. Lenci and G. Rega, A procedure for reducing the chaotic response region in an impact mechanical system,, Nonlinear Dynamics, 15 (1998), 391.  doi: 10.1023/A:1008209513877.  Google Scholar

[5]

D. J. Wagg, G. Karpodinis and S. R. Bishop, An experimental study of the impulse response of a vibro-impacting cantilever beam,, Journal of Sound & Vibration, 228 (1999), 243.  doi: 10.1006/jsvi.1999.2318.  Google Scholar

[6]

E. K. Ervin and J. A. Wickert, Experiments on a beam-rigid body structure repetitively impacting a rod,, Nonlinear Dynamics, 50 (2007), 701.  doi: 10.1007/s11071-006-9180-3.  Google Scholar

[7]

J. Ing, E. Pavlovskaia and M. Wiercigroch, An experimental study into the bilinear oscillator close to grazing,, In, 96 (2007).   Google Scholar

[8]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator,, Journal of Sound and Vibration, 145 (1991), 279.  doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[9]

A. B. Nordmark, Universal limit mapping in grazing bifurcations,, Phys. Rev. E, 55 (1997), 266.  doi: 10.1103/PhysRevE.55.266.  Google Scholar

[10]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer Verlag (Applied Mathematical Sciences), (2008).   Google Scholar

[11]

Y. Ma, M. Agarwal and S. Banerjee, Border collision bifurcations in a soft impact system,, Physics Letters A, 354 (2006), 281.  doi: 10.1016/j.physleta.2006.01.025.  Google Scholar

[12]

Y. Ma, J. Ing, S. Banerjee, M. Wiercigroch and E. Pavlovskaia, The nature of the normal form map for soft impacting systems,, International Journal of Nonlinear Mechanics, 43 (2008), 504.  doi: 10.1016/j.ijnonlinmec.2008.04.001.  Google Scholar

[13]

J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Experimental study of impact oscillator with one-sided elastic constraint,, Philosophical Transactions of the Royal Society of London, 366 (2008), 679.   Google Scholar

[14]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations in Non-Smooth Mechanical Systems,", Springer Verlag, (2004).   Google Scholar

[15]

S. Banerjee and C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth maps,, Physical Review E, 59 (1999), 4052.  doi: 10.1103/PhysRevE.59.4052.  Google Scholar

[16]

S. Banerjee, P. Ranjan and C. Grebogi, Bifurcations in two-dimensional piecewise smooth maps -- theory and applications in switching circuits,, IEEE Transactions on Circuits and Systems-I, 47 (2000), 633.  doi: 10.1109/81.847870.  Google Scholar

[17]

H. Dankowicz and F. Svahn, On the stabilizability of near-grazing dynamics in impact oscillators,, Int. J. Robust & Nonlinear Control, 17 (2007), 1405.  doi: 10.1002/rnc.1252.  Google Scholar

show all references

References:
[1]

S. W. Shaw and P. J. Holmes, A periodically forced piecewise linear oscillator,, Journal of Sound & Vibration, 90 (1983), 129.  doi: 10.1016/0022-460X(83)90407-8.  Google Scholar

[2]

F. Peterka and J. Vacik, Transition to chaotic motion in mechanical systems with impacts,, Journal of Sound and Vibration, 154 (1992), 95.  doi: 10.1016/0022-460X(92)90406-N.  Google Scholar

[3]

B. Blazejczyk-Okolewska and T. Kapitaniak, Co-existing attractors of impact oscillator,, Chaos, 9 (1998), 1439.  doi: 10.1016/S0960-0779(98)00164-7.  Google Scholar

[4]

S. Lenci and G. Rega, A procedure for reducing the chaotic response region in an impact mechanical system,, Nonlinear Dynamics, 15 (1998), 391.  doi: 10.1023/A:1008209513877.  Google Scholar

[5]

D. J. Wagg, G. Karpodinis and S. R. Bishop, An experimental study of the impulse response of a vibro-impacting cantilever beam,, Journal of Sound & Vibration, 228 (1999), 243.  doi: 10.1006/jsvi.1999.2318.  Google Scholar

[6]

E. K. Ervin and J. A. Wickert, Experiments on a beam-rigid body structure repetitively impacting a rod,, Nonlinear Dynamics, 50 (2007), 701.  doi: 10.1007/s11071-006-9180-3.  Google Scholar

[7]

J. Ing, E. Pavlovskaia and M. Wiercigroch, An experimental study into the bilinear oscillator close to grazing,, In, 96 (2007).   Google Scholar

[8]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator,, Journal of Sound and Vibration, 145 (1991), 279.  doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[9]

A. B. Nordmark, Universal limit mapping in grazing bifurcations,, Phys. Rev. E, 55 (1997), 266.  doi: 10.1103/PhysRevE.55.266.  Google Scholar

[10]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer Verlag (Applied Mathematical Sciences), (2008).   Google Scholar

[11]

Y. Ma, M. Agarwal and S. Banerjee, Border collision bifurcations in a soft impact system,, Physics Letters A, 354 (2006), 281.  doi: 10.1016/j.physleta.2006.01.025.  Google Scholar

[12]

Y. Ma, J. Ing, S. Banerjee, M. Wiercigroch and E. Pavlovskaia, The nature of the normal form map for soft impacting systems,, International Journal of Nonlinear Mechanics, 43 (2008), 504.  doi: 10.1016/j.ijnonlinmec.2008.04.001.  Google Scholar

[13]

J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Experimental study of impact oscillator with one-sided elastic constraint,, Philosophical Transactions of the Royal Society of London, 366 (2008), 679.   Google Scholar

[14]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations in Non-Smooth Mechanical Systems,", Springer Verlag, (2004).   Google Scholar

[15]

S. Banerjee and C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth maps,, Physical Review E, 59 (1999), 4052.  doi: 10.1103/PhysRevE.59.4052.  Google Scholar

[16]

S. Banerjee, P. Ranjan and C. Grebogi, Bifurcations in two-dimensional piecewise smooth maps -- theory and applications in switching circuits,, IEEE Transactions on Circuits and Systems-I, 47 (2000), 633.  doi: 10.1109/81.847870.  Google Scholar

[17]

H. Dankowicz and F. Svahn, On the stabilizability of near-grazing dynamics in impact oscillators,, Int. J. Robust & Nonlinear Control, 17 (2007), 1405.  doi: 10.1002/rnc.1252.  Google Scholar

[1]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[2]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[3]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[4]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[5]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[6]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[7]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[8]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[9]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[10]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[11]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[12]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[13]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[14]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[15]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[16]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[17]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[19]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (12)

[Back to Top]