• Previous Article
    Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
  • DCDS-B Home
  • This Issue
  • Next Article
    Consensus of discrete-time linear multi-agent systems with observer-type protocols
September  2011, 16(2): 475-488. doi: 10.3934/dcdsb.2011.16.475

Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system

1. 

School of Mathematics, Yunnan Normal University, Kunming 650092, China

2. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

3. 

College of Mathematics and Information Science, Guangxi University, Nanning 530004, China

4. 

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Received  November 2009 Revised  December 2010 Published  June 2011

A problem of reducing a general three-dimensional (3-D) autonomous quadratic system to a Lorenz-type system is studied. Firstly, under some necessary conditions for preserving the basic qualitative properties of the Lorenz system, the general 3-D autonomous quadratic system is converted to an extended Lorenz-type system (ELTS) which contains a large class of existing chaotic dynamical systems. Secondly, some different canonical forms of the ELTS are obtained with the aid of various nonsingular linear transformations and normalization techniques. Thirdly, the conjugate systems of the ELTS are defined and discussed. Finally, a sufficient condition for the nonexistence of chaos in such ELTS is derived.
Citation: Cuncai Hua, Guanrong Chen, Qunhong Li, Juhong Ge. Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 475-488. doi: 10.3934/dcdsb.2011.16.475
References:
[1]

E. N. Lorenz, Deterministic non periodic flow,, J. Atmos. Sci., 20 (1963), 130. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[2]

O. E. Rössler, An equation for continuous chaos,, Phys. Lett. A., 57 (1976), 397. doi: 10.1016/0375-9601(76)90101-8.

[3]

L. O. Chua, M. Komuro and T. Matsumoto, The double scroll family. Part I: Rigorous proof of chaos,, IEEE Trans. Circ. Syst., 33 (1986), 1072. doi: 10.1109/TCS.1986.1085869.

[4]

G. R. Chen and J. H. Lü, "Dynamical Analysis, Control and Synchronizations for the Family of Lorenz System,", Science Press, (2003).

[5]

A. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537. doi: 10.3934/dcdsb.2008.10.537.

[6]

A. Neishtadtand, C. Sim, D. Treschev and A. Vasiliev, Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621. doi: 10.3934/dcdsb.2008.10.621.

[7]

H. W. Broer, C. Sim and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871. doi: 10.3934/dcdsb.2010.14.871.

[8]

G. R. Chen and D. Lai, Feedback control of Lyapunov exponents from discrete-time dynamical systems,, Int. J. Bifurcation and Chaos, 6 (1996), 1341. doi: 10.1142/S021812749600076X.

[9]

G. R. Chen and D. Lai, Feedback anticontrol discrete of chaos,, Int. J. Bifurcation and Chaos, 8 (1998), 1585. doi: 10.1142/S0218127498001236.

[10]

G. R. Chen, Chaotification via feedback: the discrete case,, in, (1971).

[11]

G. R. Chen and T. Ueta, Yet another chaotic attractor,, Int. J. Bifurcation and Chaos, 9 (1999), 1465.

[12]

J. H. Lü and G. R. Chen, A new chaotic attractor coined,, Int. J. Bifurcation and Chaos, 3 (2002), 659.

[13]

J. H. Lü, G. R. Chen, D. Chen and S.Celikovsky, Bridge the gap between the Lorenz system and the Chen system,, Int. J. Bifurcation and Chaos, 12 (2002), 2917. doi: 10.1142/S021812740200631X.

[14]

W. B. Liu and G. R. Chen, A new chaotic system and its generation,, Int. J. Bifurcation and Chaos, 13 (2003), 261. doi: 10.1142/S0218127403006509.

[15]

W. B. Liu and G. R. Chen, Can a three-dimensional smooth autonomous quadratic chaotic system generate single four-scroll attractors,, Int. J. Bifurcation and Chaos, 14 (2004), 1395. doi: 10.1142/S0218127404009880.

[16]

A. Vaně ček and S. Čelikovský, "Control Systems: From Linear Analysis to Synthesis of Chaos,", Prentice-Hall, (1996).

[17]

S. Čelikovský and G. R. Chen, Hyperbolic-type generalized Lorenz system and its canonical form,, In, (2002).

[18]

S. Čelikovský and G. R. Chen, On a generalized Lorenz canonical form of chaotic system,, Int. J. Bifurcation and Chaos, 12 (2002), 1789. doi: 10.1142/S0218127402005467.

[19]

S. Čelikovský and G. Chen, On the generalized Lorenz canonical form,, Chaos, 26 (2005), 1271. doi: 10.1016/j.chaos.2005.02.040.

[20]

A. L. Shil'nikov, On bifurcations of the Lorenz attractor in the Shimizu-Morioka model,, Physica D, 62 (1993), 338. doi: 10.1016/0167-2789(93)90292-9.

[21]

Q. G. Yang, G. R. Chen and T. S. Zhou, A unified Lorenz-type system and its canonical form,, Int. J. Bifurcation and Chaos, 14 (2006), 2855. doi: 10.1142/S0218127406016501.

[22]

J. C. Sprott, Some simple chaotic flows,, Phys. Rev. E., 50 (1994). doi: 10.1103/PhysRevE.50.R647.

[23]

C. P. Silva, Sil'nikov theorem-a tutorial,, IEEE Trans. Circ. Syst.-I, 40 (1993), 675.

show all references

References:
[1]

E. N. Lorenz, Deterministic non periodic flow,, J. Atmos. Sci., 20 (1963), 130. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[2]

O. E. Rössler, An equation for continuous chaos,, Phys. Lett. A., 57 (1976), 397. doi: 10.1016/0375-9601(76)90101-8.

[3]

L. O. Chua, M. Komuro and T. Matsumoto, The double scroll family. Part I: Rigorous proof of chaos,, IEEE Trans. Circ. Syst., 33 (1986), 1072. doi: 10.1109/TCS.1986.1085869.

[4]

G. R. Chen and J. H. Lü, "Dynamical Analysis, Control and Synchronizations for the Family of Lorenz System,", Science Press, (2003).

[5]

A. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537. doi: 10.3934/dcdsb.2008.10.537.

[6]

A. Neishtadtand, C. Sim, D. Treschev and A. Vasiliev, Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621. doi: 10.3934/dcdsb.2008.10.621.

[7]

H. W. Broer, C. Sim and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871. doi: 10.3934/dcdsb.2010.14.871.

[8]

G. R. Chen and D. Lai, Feedback control of Lyapunov exponents from discrete-time dynamical systems,, Int. J. Bifurcation and Chaos, 6 (1996), 1341. doi: 10.1142/S021812749600076X.

[9]

G. R. Chen and D. Lai, Feedback anticontrol discrete of chaos,, Int. J. Bifurcation and Chaos, 8 (1998), 1585. doi: 10.1142/S0218127498001236.

[10]

G. R. Chen, Chaotification via feedback: the discrete case,, in, (1971).

[11]

G. R. Chen and T. Ueta, Yet another chaotic attractor,, Int. J. Bifurcation and Chaos, 9 (1999), 1465.

[12]

J. H. Lü and G. R. Chen, A new chaotic attractor coined,, Int. J. Bifurcation and Chaos, 3 (2002), 659.

[13]

J. H. Lü, G. R. Chen, D. Chen and S.Celikovsky, Bridge the gap between the Lorenz system and the Chen system,, Int. J. Bifurcation and Chaos, 12 (2002), 2917. doi: 10.1142/S021812740200631X.

[14]

W. B. Liu and G. R. Chen, A new chaotic system and its generation,, Int. J. Bifurcation and Chaos, 13 (2003), 261. doi: 10.1142/S0218127403006509.

[15]

W. B. Liu and G. R. Chen, Can a three-dimensional smooth autonomous quadratic chaotic system generate single four-scroll attractors,, Int. J. Bifurcation and Chaos, 14 (2004), 1395. doi: 10.1142/S0218127404009880.

[16]

A. Vaně ček and S. Čelikovský, "Control Systems: From Linear Analysis to Synthesis of Chaos,", Prentice-Hall, (1996).

[17]

S. Čelikovský and G. R. Chen, Hyperbolic-type generalized Lorenz system and its canonical form,, In, (2002).

[18]

S. Čelikovský and G. R. Chen, On a generalized Lorenz canonical form of chaotic system,, Int. J. Bifurcation and Chaos, 12 (2002), 1789. doi: 10.1142/S0218127402005467.

[19]

S. Čelikovský and G. Chen, On the generalized Lorenz canonical form,, Chaos, 26 (2005), 1271. doi: 10.1016/j.chaos.2005.02.040.

[20]

A. L. Shil'nikov, On bifurcations of the Lorenz attractor in the Shimizu-Morioka model,, Physica D, 62 (1993), 338. doi: 10.1016/0167-2789(93)90292-9.

[21]

Q. G. Yang, G. R. Chen and T. S. Zhou, A unified Lorenz-type system and its canonical form,, Int. J. Bifurcation and Chaos, 14 (2006), 2855. doi: 10.1142/S0218127406016501.

[22]

J. C. Sprott, Some simple chaotic flows,, Phys. Rev. E., 50 (1994). doi: 10.1103/PhysRevE.50.R647.

[23]

C. P. Silva, Sil'nikov theorem-a tutorial,, IEEE Trans. Circ. Syst.-I, 40 (1993), 675.

[1]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[2]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[3]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[4]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[5]

Leo Howden, Donald Giddings, Henry Power, Michael Vloeberghs. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 957-969. doi: 10.3934/dcdsb.2011.15.957

[6]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[7]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[8]

Dan Li, Chunlai Mu, Pan Zheng, Ke Lin. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 831-849. doi: 10.3934/dcdsb.2018209

[9]

María Anguiano, Tomás Caraballo. Asymptotic behaviour of a non-autonomous Lorenz-84 system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3901-3920. doi: 10.3934/dcds.2014.34.3901

[10]

Xianmin Xu. Analysis for wetting on rough surfaces by a three-dimensional phase field model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2839-2850. doi: 10.3934/dcdsb.2016075

[11]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[12]

Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151

[13]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

[14]

Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839

[15]

Dongfeng Zhang, Junxiang Xu, Xindong Xu. Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2851-2877. doi: 10.3934/dcds.2018123

[16]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[17]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[18]

Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems & Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523

[19]

Lars Lamberg. Unique recovery of unknown projection orientations in three-dimensional tomography. Inverse Problems & Imaging, 2008, 2 (4) : 547-575. doi: 10.3934/ipi.2008.2.547

[20]

Hua Zhong, Xiao-Ping Wang, Shuyu Sun. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2905-2926. doi: 10.3934/dcdsb.2016079

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]