2012, 17(4): 1261-1287. doi: 10.3934/dcdsb.2012.17.1261

Random walks, random flows, and enhanced diffusivity in advection-diffusion equations

1. 

Mathematics Department, University of North Carolina, Chapel Hill, NC 27599, United States

Received  June 2010 Revised  August 2011 Published  February 2012

We study the phenomenon of enhanced diffusivity, introduced by G. I.Taylor, for a class of advection-diffusion equations, modeling, for example, the spread of an ink drop in a fluid engaged in Poiseuille flow. We consider such flow in a pipe of general cross section, and compute variances and covariances of certain random flows associated with the advection-diffusion. We examine both long time behavior, including a central limit theorem, and short time asymptotics.
Citation: Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261
References:
[1]

M. Avellaneda and A. Majda, An integral representation and bounds on the effective diffusivity in passive advective diffusion by laminar and turbulent flows,, Commun. Math. Phys., 138 (1991), 339.

[2]

R. Camassa, Z. Lin and R. McLaughlin, The exact evolution of the scalar variance in pipe and channel flow,, Commun. Math. Sci., 8 (2010), 601.

[3]

S. Goldstein, On diffusion by discontinuous movements and on the telegraph equation,, Quart. J. Mech. Appl. Math., 4 (1951), 129. doi: 10.1093/qjmam/4.2.129.

[4]

R. Griego and R. Hersh, Theory of random evolutions with applications to partial differential equations,, Trans. AMS, 156 (1971), 405. doi: 10.1090/S0002-9947-1971-0275507-7.

[5]

A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena,, Physics Reports, 314 (1999), 237. doi: 10.1016/S0370-1573(98)00083-0.

[6]

A. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular pipe flows,, Commun. PDE, 36 (2012), 328. doi: 10.1080/03605302.2010.505973.

[7]

M. Pinsky, "Lectures on Random Evolution,'', World Scientific, (1991).

[8]

G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube,, Proc. Roy. Soc. London A, 219 (1953), 186. doi: 10.1098/rspa.1953.0139.

[9]

M. Taylor, "Partial Differential Equations,'' Vols. 1-3,, Springer-Verlag, (1996).

show all references

References:
[1]

M. Avellaneda and A. Majda, An integral representation and bounds on the effective diffusivity in passive advective diffusion by laminar and turbulent flows,, Commun. Math. Phys., 138 (1991), 339.

[2]

R. Camassa, Z. Lin and R. McLaughlin, The exact evolution of the scalar variance in pipe and channel flow,, Commun. Math. Sci., 8 (2010), 601.

[3]

S. Goldstein, On diffusion by discontinuous movements and on the telegraph equation,, Quart. J. Mech. Appl. Math., 4 (1951), 129. doi: 10.1093/qjmam/4.2.129.

[4]

R. Griego and R. Hersh, Theory of random evolutions with applications to partial differential equations,, Trans. AMS, 156 (1971), 405. doi: 10.1090/S0002-9947-1971-0275507-7.

[5]

A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena,, Physics Reports, 314 (1999), 237. doi: 10.1016/S0370-1573(98)00083-0.

[6]

A. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular pipe flows,, Commun. PDE, 36 (2012), 328. doi: 10.1080/03605302.2010.505973.

[7]

M. Pinsky, "Lectures on Random Evolution,'', World Scientific, (1991).

[8]

G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube,, Proc. Roy. Soc. London A, 219 (1953), 186. doi: 10.1098/rspa.1953.0139.

[9]

M. Taylor, "Partial Differential Equations,'' Vols. 1-3,, Springer-Verlag, (1996).

[1]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[2]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[3]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[4]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks & Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

[5]

Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2018200

[6]

Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105

[7]

J.R. Stirling. Chaotic advection, transport and patchiness in clouds of pollution in an estuarine flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 263-284. doi: 10.3934/dcdsb.2003.3.263

[8]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[9]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[10]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[11]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[12]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

[13]

Kunimochi Sakamoto. Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 641-654. doi: 10.3934/dcdsb.2016.21.641

[14]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[15]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[16]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[17]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[18]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[19]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[20]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]