2012, 17(6): 1795-1807. doi: 10.3934/dcdsb.2012.17.1795

Interactions of point vortices in the Zabusky-McWilliams model with a background flow

1. 

Warwick Mathematics Institute and Warwick Centre for Complexity Science, University of Warwick, Coventry, CV4 7AL, United Kingdom

2. 

Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, 24–29 St Giles’, Oxford OX1 3LB, United Kingdom

Received  May 2011 Revised  December 2011 Published  May 2012

We combine a simple quasi-geostrophic flow model with the Zabusky-McWilliams theory of atmospheric vortex dynamics to address a hurricane-tracking problem of interest to the insurance industry. This enables us to make predictions about the "follow-my-leader" phenomenon.
Citation: Colm Connaughton, John R. Ockendon. Interactions of point vortices in the Zabusky-McWilliams model with a background flow. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1795-1807. doi: 10.3934/dcdsb.2012.17.1795
References:
[1]

I. J. Benczik, T. Tél and Z. Köllö, Modulated point-vortex couples on a beta-plane: Dynamics and chaotic advection,, J. Fluid Mech., 582 (2007), 1. doi: 10.1017/S002211200700571X.

[2]

W. Bin, R. L. Elsberry, W. Yuqing and W. Liguang, Dynamics in tropical cyclone motion: A review,, Chinese J. Atm. Sci., 22 (1998), 416.

[3]

J. G. Charney, On a physical basis for numerical prediction of large-scale motions in the atmosphere,, J. Meteor, 6 (1949), 371.

[4]

M. Lander and G. J. Holland, On the interaction of tropical-cyclone-scale vortices. I: Observations,, Quart. J. Roy. Met. Soc., 119 (1993), 1347. doi: 10.1002/qj.49711951406.

[5]

L. MacManus, et al, Modelling hurricane track memory,, Report of 73rd European Study Group with Industry, (2010).

[6]

NOAA, "Hurricane Basics," 1999., Available from: \url{http://hurricanes.noaa.gov/pdf/hurricanebook.pdf}., ().

[7]

J. Pedlosky, "Geophysical Fluid Dynamics," 2nd ed.,, Springer, (1987).

[8]

O. U. Velasco Fuentes and F. A. Velázquez Muñoz, Interaction of two equal vortices on a $\beta$-plane,, Phys. Fluids, 15 (2003), 1021. doi: 10.1063/1.1556293.

[9]

N. J. Zabusky and J. C. McWilliams, A modulated point-vortex model for geostrophic $\beta$-plane dynamics,, Phys. Fluids, 25 (1982), 2175. doi: 10.1063/1.863709.

show all references

References:
[1]

I. J. Benczik, T. Tél and Z. Köllö, Modulated point-vortex couples on a beta-plane: Dynamics and chaotic advection,, J. Fluid Mech., 582 (2007), 1. doi: 10.1017/S002211200700571X.

[2]

W. Bin, R. L. Elsberry, W. Yuqing and W. Liguang, Dynamics in tropical cyclone motion: A review,, Chinese J. Atm. Sci., 22 (1998), 416.

[3]

J. G. Charney, On a physical basis for numerical prediction of large-scale motions in the atmosphere,, J. Meteor, 6 (1949), 371.

[4]

M. Lander and G. J. Holland, On the interaction of tropical-cyclone-scale vortices. I: Observations,, Quart. J. Roy. Met. Soc., 119 (1993), 1347. doi: 10.1002/qj.49711951406.

[5]

L. MacManus, et al, Modelling hurricane track memory,, Report of 73rd European Study Group with Industry, (2010).

[6]

NOAA, "Hurricane Basics," 1999., Available from: \url{http://hurricanes.noaa.gov/pdf/hurricanebook.pdf}., ().

[7]

J. Pedlosky, "Geophysical Fluid Dynamics," 2nd ed.,, Springer, (1987).

[8]

O. U. Velasco Fuentes and F. A. Velázquez Muñoz, Interaction of two equal vortices on a $\beta$-plane,, Phys. Fluids, 15 (2003), 1021. doi: 10.1063/1.1556293.

[9]

N. J. Zabusky and J. C. McWilliams, A modulated point-vortex model for geostrophic $\beta$-plane dynamics,, Phys. Fluids, 25 (1982), 2175. doi: 10.1063/1.863709.

[1]

Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971

[2]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[3]

Luis Vega. The dynamics of vortex filaments with corners. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1581-1601. doi: 10.3934/cpaa.2015.14.1581

[4]

Gianluca Crippa, Milton C. Lopes Filho, Evelyne Miot, Helena J. Nussenzveig Lopes. Flows of vector fields with point singularities and the vortex-wave system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2405-2417. doi: 10.3934/dcds.2016.36.2405

[5]

Chjan C. Lim, Ka Kit Tung. Introduction: Recent advances in vortex dynamics and turbulence. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : i-i. doi: 10.3934/dcdsb.2005.5.1i

[6]

Zvia Agur, L. Arakelyan, P. Daugulis, Y. Ginosar. Hopf point analysis for angiogenesis models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 29-38. doi: 10.3934/dcdsb.2004.4.29

[7]

Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77

[8]

Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95

[9]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

[10]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[11]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[12]

Zhiguo Xu, Weizhu Bao, Shaoyun Shi. Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2265-2297. doi: 10.3934/dcdsb.2018096

[13]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[14]

Jean-Marc Hérard, Olivier Hurisse. Some attempts to couple distinct fluid models. Networks & Heterogeneous Media, 2010, 5 (3) : 649-660. doi: 10.3934/nhm.2010.5.649

[15]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[16]

Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223

[17]

A. V. Borisov, I. S. Mamaev, S. M. Ramodanov. Dynamics of a circular cylinder interacting with point vortices. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 35-50. doi: 10.3934/dcdsb.2005.5.35

[18]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[19]

A. V. Borisov, I.S. Mamaev, S. M. Ramodanov. Dynamics of two interacting circular cylinders in perfect fluid. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 235-253. doi: 10.3934/dcds.2007.19.235

[20]

Jeffrey J. Early, Juha Pohjanpelto, Roger M. Samelson. Group foliation of equations in geophysical fluid dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1571-1586. doi: 10.3934/dcds.2010.27.1571

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]