2012, 17(6): 1841-1858. doi: 10.3934/dcdsb.2012.17.1841

On the local behavior of non-negative solutions to a logarithmically singular equation

1. 

Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville TN 37240, United States, United States

2. 

Dipartimento di Matematica "F. Casorati”, Università di Pavia, Via Ferrata 1, 27100 Pavia

Received  September 2011 Revised  November 2011 Published  May 2012

The local positivity of solutions to logarithmically singular diffusion equations is investigated in some open space-time domain $E\times(0,T]$. It is shown that if at some time level $t_o\in(0,T]$ and some point $x_o\in E$ the solution $u(\cdot,t_o)$ is not identically zero in a neighborhood of $x_o$, in a measure-theoretical sense, then it is strictly positive in a neighborhood of $(x_o, t_o)$. The precise form of this statement is by an intrinsic Harnack-type inequality, which also determines the size of such a neighborhood.
Citation: Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841
References:
[1]

M. Bonforte and J. L. Vázquez, Positivity, local smoothing and Harnack inequalities for very fast diffusion equations,, Adv. Math., 223 (2010), 529. doi: 10.1016/j.aim.2009.08.021.

[2]

J. P. Burelbach, S. G. Bankoff and S. H. Davis, Nonlinear stability of evaporating/condensing liquid films,, J. Fluid Mech., 195 (1988), 463. doi: 10.1017/S0022112088002484.

[3]

S.-C. Chang, S.-K. Hong and C.-T. Wu, The Harnack estimate for the modified Ricci flow on complete $\mathbb R^2$,, Rocky Mountain J. of Math., 33 (2003), 69. doi: 10.1216/rmjm/1181069987.

[4]

J. T. Chayes, S. J. Osher and J. V. Ralston, On singular diffusion equations with applications to self-organized criticality,, Comm. Pure Appl. Math., 46 (1993), 1363. doi: 10.1002/cpa.3160461004.

[5]

S. H. Davis, E. DiBenedetto and D. J. Diller, Some a priori estimates for a singular evolution equation arising in thin-film dynamics,, SIAM J. Math. Anal., 27 (1996), 638. doi: 10.1137/0527035.

[6]

P. Daskalopoulos and M. Del Pino, On nonlinear parabolic equations of very fast diffusion,, Arch. Rational Mech. Anal., 137 (1997), 363.

[7]

P. Daskalopoulos and M. del Pino, On the Cauchy problem for $u_t=\Delta\log u$ in higher dimensions,, Math. Ann., 313 (1999), 189. doi: 10.1007/s002080050257.

[8]

P. Daskalopoulos and M. Del Pino, Nonradial solvability structure of super-diffusive nonlinear parabolic equations,, Trans. Amer. Math. Soc., 354 (2002), 1583. doi: 10.1090/S0002-9947-01-02888-4.

[9]

P. G. de Gennes, Wetting: Statics and dynamics,, Rev. Modern Phys., 57 (1985), 827. doi: 10.1103/RevModPhys.57.827.

[10]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993).

[11]

E. DiBenedetto and D. J. Diller, About a singular parabolic equation arising in thin film dynamics and in the Ricci flow for complete $\mathbb R^2$,, in, 177 (1996), 103.

[12]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial differential equations,, Manuscripta Mathematica, 131 (2010), 231. doi: 10.1007/s00229-009-0317-9.

[13]

E. DiBenedetto, U. Gianazza and V. Vespri, "Harnack's Inequality for Degenerate and Singular Parabolic Equations,", Springer Monographs in Mathematics, (2012).

[14]

J. R. Esteban, A. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity,, Comm. Partial Differential Equations, 139 (1988), 985. doi: 10.1080/03605308808820566.

[15]

R. Hamilton, The Harnack estimate for the Ricci flow,, J. Differential Geom., 37 (1993), 225.

[16]

K. M. Hui, Singular limit of solutions of the equation $u_t=\Delta\frac{u^m}m$ as $m\rightarrow0$,, Pacific J. Math., 187 (1999), 297. doi: 10.2140/pjm.1999.187.297.

[17]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation,, Nonlinear Anal., 68 (2008), 1120. doi: 10.1016/j.na.2006.12.009.

[18]

H. P. McKean, The central limit theorem for Carleman's equation,, Israel J. Math., 21 (1975), 54. doi: 10.1007/BF02757134.

[19]

P. Rosenau, Fast and superfast diffusion processes,, Physical Rev. Lett., 74 (1995), 1056. doi: 10.1103/PhysRevLett.74.1056.

[20]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl. (9), 71 (1992), 503.

[21]

J. L. Vázquez, Failure of the strong maxmum principle in nonlinear diffusion. Existence of needles,, Comm. Partial Differential Equations, 30 (2005), 1263. doi: 10.1080/10623320500258759.

[22]

M. B. Williams and S. H. Davis, Nonlinear theory of film rupture,, Jour. of Colloid and Interface Sc., 90 (1982), 220. doi: 10.1016/0021-9797(82)90415-5.

[23]

L.-F. Wu, The Ricci flow on complete $\mathbb R^2$,, Comm. in Anal. Geom., 1 (1993), 439.

show all references

References:
[1]

M. Bonforte and J. L. Vázquez, Positivity, local smoothing and Harnack inequalities for very fast diffusion equations,, Adv. Math., 223 (2010), 529. doi: 10.1016/j.aim.2009.08.021.

[2]

J. P. Burelbach, S. G. Bankoff and S. H. Davis, Nonlinear stability of evaporating/condensing liquid films,, J. Fluid Mech., 195 (1988), 463. doi: 10.1017/S0022112088002484.

[3]

S.-C. Chang, S.-K. Hong and C.-T. Wu, The Harnack estimate for the modified Ricci flow on complete $\mathbb R^2$,, Rocky Mountain J. of Math., 33 (2003), 69. doi: 10.1216/rmjm/1181069987.

[4]

J. T. Chayes, S. J. Osher and J. V. Ralston, On singular diffusion equations with applications to self-organized criticality,, Comm. Pure Appl. Math., 46 (1993), 1363. doi: 10.1002/cpa.3160461004.

[5]

S. H. Davis, E. DiBenedetto and D. J. Diller, Some a priori estimates for a singular evolution equation arising in thin-film dynamics,, SIAM J. Math. Anal., 27 (1996), 638. doi: 10.1137/0527035.

[6]

P. Daskalopoulos and M. Del Pino, On nonlinear parabolic equations of very fast diffusion,, Arch. Rational Mech. Anal., 137 (1997), 363.

[7]

P. Daskalopoulos and M. del Pino, On the Cauchy problem for $u_t=\Delta\log u$ in higher dimensions,, Math. Ann., 313 (1999), 189. doi: 10.1007/s002080050257.

[8]

P. Daskalopoulos and M. Del Pino, Nonradial solvability structure of super-diffusive nonlinear parabolic equations,, Trans. Amer. Math. Soc., 354 (2002), 1583. doi: 10.1090/S0002-9947-01-02888-4.

[9]

P. G. de Gennes, Wetting: Statics and dynamics,, Rev. Modern Phys., 57 (1985), 827. doi: 10.1103/RevModPhys.57.827.

[10]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993).

[11]

E. DiBenedetto and D. J. Diller, About a singular parabolic equation arising in thin film dynamics and in the Ricci flow for complete $\mathbb R^2$,, in, 177 (1996), 103.

[12]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial differential equations,, Manuscripta Mathematica, 131 (2010), 231. doi: 10.1007/s00229-009-0317-9.

[13]

E. DiBenedetto, U. Gianazza and V. Vespri, "Harnack's Inequality for Degenerate and Singular Parabolic Equations,", Springer Monographs in Mathematics, (2012).

[14]

J. R. Esteban, A. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity,, Comm. Partial Differential Equations, 139 (1988), 985. doi: 10.1080/03605308808820566.

[15]

R. Hamilton, The Harnack estimate for the Ricci flow,, J. Differential Geom., 37 (1993), 225.

[16]

K. M. Hui, Singular limit of solutions of the equation $u_t=\Delta\frac{u^m}m$ as $m\rightarrow0$,, Pacific J. Math., 187 (1999), 297. doi: 10.2140/pjm.1999.187.297.

[17]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation,, Nonlinear Anal., 68 (2008), 1120. doi: 10.1016/j.na.2006.12.009.

[18]

H. P. McKean, The central limit theorem for Carleman's equation,, Israel J. Math., 21 (1975), 54. doi: 10.1007/BF02757134.

[19]

P. Rosenau, Fast and superfast diffusion processes,, Physical Rev. Lett., 74 (1995), 1056. doi: 10.1103/PhysRevLett.74.1056.

[20]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl. (9), 71 (1992), 503.

[21]

J. L. Vázquez, Failure of the strong maxmum principle in nonlinear diffusion. Existence of needles,, Comm. Partial Differential Equations, 30 (2005), 1263. doi: 10.1080/10623320500258759.

[22]

M. B. Williams and S. H. Davis, Nonlinear theory of film rupture,, Jour. of Colloid and Interface Sc., 90 (1982), 220. doi: 10.1016/0021-9797(82)90415-5.

[23]

L.-F. Wu, The Ricci flow on complete $\mathbb R^2$,, Comm. in Anal. Geom., 1 (1993), 439.

[1]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. $L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 737-760. doi: 10.3934/dcdss.2014.7.737

[2]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[3]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[4]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[5]

Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks & Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301

[6]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[7]

Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237

[8]

Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129

[9]

Yoshikazu Giga, Robert V. Kohn. Scale-invariant extinction time estimates for some singular diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 509-535. doi: 10.3934/dcds.2011.30.509

[10]

C. García Vázquez, Francisco Ortegón Gallego. On certain nonlinear parabolic equations with singular diffusion and data in $L^1$. Communications on Pure & Applied Analysis, 2005, 4 (3) : 589-612. doi: 10.3934/cpaa.2005.4.589

[11]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[12]

Fatma Gamze Düzgün, Ugo Gianazza, Vincenzo Vespri. $1$-dimensional Harnack estimates. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 675-685. doi: 10.3934/dcdss.2016021

[13]

Dung Le. Strong positivity of continuous supersolutions to parabolic equations with rough boundary data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1521-1530. doi: 10.3934/dcds.2015.35.1521

[14]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[15]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[16]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[17]

Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543

[18]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[19]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic & Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[20]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]